Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Methods ; 406: 110129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614286

RESUMO

The integration of emotional intelligence in machines is an important step in advancing human-computer interaction. This demands the development of reliable end-to-end emotion recognition systems. However, the scarcity of public affective datasets presents a challenge. In this literature review, we emphasize the use of generative models to address this issue in neurophysiological signals, particularly Electroencephalogram (EEG) and Functional Near-Infrared Spectroscopy (fNIRS). We provide a comprehensive analysis of different generative models used in the field, examining their input formulation, deployment strategies, and methodologies for evaluating the quality of synthesized data. This review serves as a comprehensive overview, offering insights into the advantages, challenges, and promising future directions in the application of generative models in emotion recognition systems. Through this review, we aim to facilitate the progression of neurophysiological data augmentation, thereby supporting the development of more efficient and reliable emotion recognition systems.


Assuntos
Eletroencefalografia , Emoções , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Eletroencefalografia/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Emoções/fisiologia , Encéfalo/fisiologia , Inteligência Emocional/fisiologia , Modelos Neurológicos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38083135

RESUMO

Automated 3D brain segmentation methods have been shown to produce fast, reliable, and reproducible segmentations from magnetic resonance imaging (MRI) sequences for the anatomical structures of the human brain. Despite the extensive experimental research utility of large animal species such as the sheep, there is limited literature on the segmentation of their brains relative to that of humans. The availability of automatic segmentation algorithms for animal brain models can have significant impact for experimental explorations, such as treatment planning and studying brain injuries. The neuroanatomical similarities in size and structure between sheep and humans, plus their long lifespan and docility, make them an ideal animal model for investigating automatic segmentation methods.This work, for the first time, proposes an atlas-free fully automatic sheep brain segmentation tool that only requires structural MR images (T1-MPRAGE images) to segment the entire sheep brain in less than one minute. We trained a convolutional neural network (CNN) model - namely a four-layer U-Net - on data from eleven adult sheep brains (training and validation: 8 sheep, testing: 3 sheep), with a high overall Dice overlap score of 93.7%.Clinical relevance- Upon future validation on larger datasets, our atlas-free automatic segmentation tool can have clinical utility and contribute towards developing robust and fully automatic segmentation tools which could compete with atlas-based tools currently available.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Adulto , Humanos , Animais , Ovinos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Encéfalo/diagnóstico por imagem , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA