Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Opt Express ; 32(11): 19895-19909, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859112

RESUMO

Due to its improved localization and confinement of light in single or multiple wavelength modes, nanolasers based on plasmonic crystals have grown in popularity in recent years. However, the lasing modes are not spatially separated, making applying different modes to different applications difficult. This work demonstrates an effective technique for spatially separating the two modes of a merged lattice metal nanohole array-based dual-mode plasmonic laser. A flat dielectric metasurface-based beam-splitter that exploits phase gradient profiles on the interfaces has been added to the laser to separate the modes into distinct spatial beams. The proposed structure successfully separates two modes by ∼23°, and the separation can be raised to ∼63° by tuning structural parameters such as the radius of the nanocylinders and the number of supercell rows. In addition, multiple beams can be generated, allowing for manual beam steering. This approach has a high emission output with a narrow linewidth, clarity, and a substantial degree of future tunability potential. The proposed integrated structure will provide a novel means of device miniaturization and may also serve advanced optical applications such as optical communication, quantum optics, interferometry, spectroscopy, and light detection and ranging (LiDAR).

2.
Opt Express ; 32(8): 14261-14275, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859377

RESUMO

We propose Tamm plasmon (TP) and surface plasmon (SP) hybrid modes for hemoglobin (Hb) detection in anisotropic graphene-photonic-crystal (GPC) structures. The proposed GPC sensor shows polarization-dependent responses due to the in-plane anisotropic property. The reflection profiles of the proposed sensor exhibit two reflectivity minima due to the simultaneous excitation of TP and SP modes. When used to detect Hb, the TP mode offers a greater figure-of-merit (FoM) than the SP mode. Using a Fourier mode spectral analysis, we observe energy coupling from the TP to the SP mode when the incident light's polarization changes, providing an option to enhance the sensor's sensitivity. We propose a double dips method (DDM) to detect Hb based on the simultaneous excitation of TP and SP modes. Using DDM, the proposed sensor offers a maximum sensitivity of 314.5 degrees/RIU and a FoM of 1746 RIU-1 when the Hb level is 189 g/L. The proposed anisotropic GPC sensor offers possible applications for highly sensitive bio-molecule detection with high FoM.

3.
PLoS One ; 18(4): e0284812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37098037

RESUMO

Precisely detecting the ultra-low-level severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial. The detection mechanism must be sensitive, low-cost, portable, fast, and easy to operate to tackle coronavirus disease 19 (COVID-19). This work proposes a sensor exploiting graphene surface plasmon resonance to detect SARS-CoV-2. The graphene layer functionalized with angiotensin-converting enzyme 2 (ACE2) antibodies will help efficient adsorption of the SARS-CoV-2. In addition to the graphene layer, ultra-thin layers of novel two-dimensional materials tungsten disulfide (WS2), potassium niobate (KNbO3), and black phosphorus (BP) or blue phosphorus (BlueP) used in the proposed sensor will increase the light absorption to detect an ultra-low SARS-CoV-2 concentration. The analysis presented in this work shows that the proposed sensor will detect SARS-CoV-2 as small as ∼1 fM. The proposed sensor also offers a minimum sensitivity of 201 degrees/RIU, a figure-of-merit of 140 RIU-1, and enhanced binding kinetics of the SARS-CoV-2 to the sensor surface.


Assuntos
COVID-19 , Grafite , Humanos , SARS-CoV-2/metabolismo , COVID-19/diagnóstico , Peptidil Dipeptidase A/metabolismo , Ressonância de Plasmônio de Superfície
4.
Opt Express ; 30(14): 25234-25248, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237058

RESUMO

Miniature lasers emitting dual-wavelength modes have diverse applications alongside the more explored single-mode counterparts. However, having dual-wavelength modes originating from a plasmonic-photonic hybrid laser is still a relatively new area for research. Compared to the amount of literature devoted to the physics of such hybrid cavities, only a few have analyzed their role in lasing applications. Notably, the role of hybrid cavities in dual-wavelength lasing is still unexplored. In this work, the properties of one-dimensional distributed Bragg reflectors and thin metal nanohole arrays come together to create a hybrid dual-mode plasmonic laser. The similar energy distribution characteristics of photonic and plasmonic lasers make hybrid structures a viable choice for efficient dual-mode lasing. In this work, the lasing cavity simultaneously excites photonic and Tamm plasmonic modes to generate dual-mode lasing. Consequently, the proposed laser shows high emission output with narrow linewidth and a clear and tunable mode separation.

5.
J Biomed Opt ; 27(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36203237

RESUMO

Significance: Biological cell imaging has become one of the most crucial research interests because of its applications in biomedical and microbiology studies. However, three-dimensional (3D) imaging of biological cells is critically challenging and often involves prohibitively expensive and complex equipment. Therefore, a low-cost imaging technique with a simpler optical arrangement is immensely needed. Aim: The proposed approach will provide an accurate cell image at a low cost without needing any microscope or extensive processing of the collected data, often used in conventional imaging techniques. Approach: We propose that patterns of surface plasmon coupled emission (SPCE) features from a fluorescently labeled biological cell can be used to image the cell. An imaging methodology has been developed and theoretically demonstrated to create 3D images of cells from the detected SPCE patterns. The 3D images created from the different SPCE properties at the far-field closely match the actual cell structures. Results: The developed technique has been applied to different regular and irregular cell shapes. In each case, the calculated root-mean-square error (RMSE) of the created images from the cell structures remains within a few percentages. Our work recreates the base of a circular-shaped cell with an RMSE of ≲1.4 % . In addition, the images of irregular-shaped cell bases have an RMSE of ≲2.8 % . Finally, we obtained a 3D image with an RMSE of ≲6.5 % for a random cellular structure. Conclusions: Despite being in its initial stage of development, the proposed technique shows promising results considering its simplicity and the nominal cost it would require.


Assuntos
Imageamento Tridimensional , Ressonância de Plasmônio de Superfície , Imageamento Tridimensional/métodos , Microscopia , Ressonância de Plasmônio de Superfície/métodos
6.
Opt Express ; 30(18): 31785-31794, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242253

RESUMO

Lasers that can emit two photons from a single electron relaxation between two states of the same parity have been discussed since the early days of the laser era. However, such lasers have seen only limited success, mainly due to a lack of suitable gain medium. We propose that terahertz (THz) frequency quantum cascade lasers (QCLs) are an ideal semiconductor structure to realize such two-photon emissions. In this work, we present a THz QCL heterostructure designed to emit two resonant photons from each electronic relaxation between two same-parity states in the active region. We present coupled Maxwell-Bloch equations that describe the dynamics of such a two-photon laser and find analytical solutions for the steady-state light intensity, the steady-state energy-resolved carrier densities, and the total threshold carrier density. Due to the two-photon emission from each excited state relaxation and an increased photon-driven carrier transport rate, our simulations predict a significant enhancement of light intensity in our designed resonant two-photon THz QCL when compared to an exemplar conventional THz QCL structure.

7.
Nanoscale Adv ; 4(3): 801-813, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131826

RESUMO

Plasmonic lasers offer great potential for cutting-edge, disruptive applications. However, they suffer from a high loss in metals, lack of spatial coherence in the near field, and divergent far-field emission. The challenges are even more significant for a plasmonic laser emitting more than one wavelength mode. The design complexity required for creating multiple modes often limits avenues for minimizing losses and converging far-field emission patterns. This work exploits plasmonic resonances at the junction of a merged lattice metal nanohole array (NHA) and a one-dimensional photonic crystal to achieve dual-mode lasing. The merged lattice NHA is designed by concentrically combining two simple NHAs with different periodicities to create pseudo randomness, leading to enhanced localization and confinement of light in multiple wavelength modes. The proposed structure notably produces intense dual-mode lasing at an ultra-low threshold compared to recent state-of-the-art plasmonic laser demonstrations. The wavelengths of the lasing modes and the separation between them can be tuned over a broad range by changing the structural parameters. The proposed laser also creates a highly directional far-field pattern with a divergence angle of only <0.35°.

8.
Biomed Phys Eng Express ; 6(5): 055007, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33444238

RESUMO

Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) analyses of diffusion-weighted magnetic resonance imaging (MRI) show that diffusional fractional anisotropy (FA) and kurtosis anisotropy (KA) of water inside brain white matter decrease for schizophrenic patients from that for healthy persons. DTI and DKI are statistical approaches and do not directly point to the underlying neurobiological reasons. In schizophrenia, it is believed that the demyelination of axons-microstructures that constitute the brain white matter-increases lateral diffusion of water and causes defective neural communications, resulting cognitive processing-speed deficits. Here, we use a simple but realistic neurobiological model for brain white matter and solve the Bloch-Torrey equation using numerical finite-element method to find out the underlying reasons of cognitive deficits in schizophrenia. FA and KA are calculated from computationally obtained diffusion-weighted MRI data after a Stejskal-Tanner gradient pulse sequence is applied to a periodic array of tubular axons with circular cross-sections. The calculated FA and KA decrease when the axon walls are more permeable to water, agree with the experimental findings, and correlate with the cognitive processing speeds of healthy persons and schizophrenic patients, and thus, help to understand the underlying reasons of cognitive processing-speed deficits in schizophrenia.


Assuntos
Transtornos Cognitivos/epidemiologia , Imagem de Difusão por Ressonância Magnética/métodos , Processos Mentais/fisiologia , Modelos Teóricos , Esquizofrenia/fisiopatologia , Substância Branca/patologia , Estudos de Casos e Controles , Transtornos Cognitivos/patologia , Humanos
9.
Biomed Opt Express ; 9(4): 1977-1991, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29675333

RESUMO

Distinguishing between whole cells and cell debris is important in microscopy, e.g., in screening of pulmonary patients for infectious tuberculosis. We propose and theoretically demonstrate that whole cells and cell debris can be distinguished from the far-field pattern of surface plasmon coupled emission (SPCE) of a fluorescently-labeled sample placed on a thin metal layer. If fluorescently-labeled whole cells are placed on the metal film, SPCE takes place simultaneously at two or more different angles and creates two or more distinct rings in the far field. By contrast, if fluorescently-labeled cell debris are placed on the metal film, SPCE takes place at only one angle and creates one ring in the far-field. We find that the angular separation of the far-field rings is sufficiently distinct to use the presence of one or more rings to distinguish between whole cells and cell debris. The proposed technique has the potential for detection without the use of a microscope.

10.
Opt Express ; 22(13): 15608-17, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977819

RESUMO

We theoretically show that quantum coherent saturable absorption can be used to obtain ultra-short pulses from mid-infrared quantum cascade lasers (QCLs). In this proposal, quantum cascade structures are processed as two electrically isolated sections. The two sections will be biased with two different voltages so that one of the sections produces gain as is done in typical QCLs, while the other produces quantum coherent resonant absorption for the propagating waves. The quantum coherent absorbing section is saturable and favors the generation of ultra-short pulses. We find that stable ultra-short pulses on the order of ∼100 ps are created from a two-section QCL when the pumping in the gain and absorbing sections remains within critical limits. The intensity and the duration of the stable pulses can be significantly varied when the pumping in the gain and absorbing sections and the length of the gain and absorbing sections are varied.

11.
Opt Express ; 18(6): 5639-53, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389579

RESUMO

We consider the impact of saturable nonlinearity and group velocity dispersion on self-induced transparency (SIT) modelocking of quantum cascade lasers (QCLs). We find that self-induced transparency modelocking in QCLs can be obtained in the presence of saturable nonlinearity if the saturable loss or gain is below a critical limit. The limit for the saturable loss is significantly more stringent than the limit for the saturable gain. Stable modelocked pulses are also obtained in the presence of both normal and anomalous group velocity dispersion when its magnitude is below a critical value. The stability limit for the saturable loss becomes less stringent when group velocity dispersion is simultaneously present. However, the stability limit for the saturable gain is not significantly affected. All these limits depend on the ratio of the SIT-induced gain and absorpt n to the linear loss. Realistic values for both the saturable nonlinearity and chromatic dispersion are within the range in which SIT modelocking is predicted to be stable.


Assuntos
Lasers , Modelos Teóricos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Dinâmica não Linear , Espalhamento de Radiação
12.
Phys Rev Lett ; 102(2): 023903, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19257276

RESUMO

The possibility of using the self-induced transparency effect to passively modelock lasers has been discussed since the late 1960s, but has never been observed. It is proposed that quantum cascade lasers are the ideal tool to create this modelocking, due to their rapid recovery times and relatively long coherence times and because it is possible to interleave gain and absorbing layers. Conversely, it is possible to use the self-induced transparency effect to create midinfrared pulses that are less than 100 fs in duration in a semiconductor laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA