Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39464061

RESUMO

RNA-binding proteins (RBPs) are key regulators of gene expression. Here, we introduce EuPRI (Eukaryotic Protein-RNA Interactions) - a freely available resource of RNA motifs for 34,736 RBPs from 690 eukaryotes. EuPRI includes in vitro binding data for 504 RBPs, including newly collected RNAcompete data for 174 RBPs, along with thousands of reconstructed motifs. We reconstruct these motifs with a new computational platform - Joint Protein-Ligand Embedding (JPLE) - which can detect distant homology relationships and map specificity-determining peptides. EuPRI quadruples the number of known RBP motifs, expanding the motif repertoire across all major eukaryotic clades, and assigning motifs to the majority of human RBPs. EuPRI drastically improves knowledge of RBP motifs in flowering plants. For example, it increases the number of Arabidopsis thaliana RBP motifs 7-fold, from 14 to 105. EuPRI also has broad utility for inferring post-transcriptional function and evolutionary relationships. We demonstrate this by predicting a role for 12 Arabidopsis thaliana RBPs in RNA stability and identifying rapid and recent evolution of post-transcriptional regulatory networks in worms and plants. In contrast, the vertebrate RNA motif set has remained relatively stable after its drastic expansion between the metazoan and vertebrate ancestors. EuPRI represents a powerful resource for the study of gene regulation across eukaryotes.

2.
Cell Stem Cell ; 30(12): 1658-1673.e10, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065069

RESUMO

Stem cells regulate their self-renewal and differentiation fate outcomes through both symmetric and asymmetric divisions. m6A RNA methylation controls symmetric commitment and inflammation of hematopoietic stem cells (HSCs) through unknown mechanisms. Here, we demonstrate that the nuclear speckle protein SON is an essential m6A target required for murine HSC self-renewal, symmetric commitment, and inflammation control. Global profiling of m6A identified that m6A mRNA methylation of Son increases during HSC commitment. Upon m6A depletion, Son mRNA increases, but its protein is depleted. Reintroduction of SON rescues defects in HSC symmetric commitment divisions and engraftment. Conversely, Son deletion results in a loss of HSC fitness, while overexpression of SON improves mouse and human HSC engraftment potential by increasing quiescence. Mechanistically, we found that SON rescues MYC and suppresses the METTL3-HSC inflammatory gene expression program, including CCL5, through transcriptional regulation. Thus, our findings define a m6A-SON-CCL5 axis that controls inflammation and HSC fate.


Assuntos
Proteínas de Ligação a DNA , Células-Tronco Hematopoéticas , Inflamação , Metilação de RNA , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Metilação de RNA/genética
3.
Sci Rep ; 13(1): 5238, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002329

RESUMO

Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.


Assuntos
Proteínas de Ligação a RNA , RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Motivos de Ligação ao RNA/genética , Ligação Proteica , Fatores de Regulação Miogênica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA