Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39026820

RESUMO

RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon-inclusion events included vinculin (VCL), tenascin C (TNC) and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon-inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse Hras G12V /Rbm1O KO thyrocytes develop metastases that are reversed by RBM10 or by combined knockdown of VCL, CD44 and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusions in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFkB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.

2.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053525

RESUMO

Hotspot mutations in the TERT (telomerase reverse transcriptase) gene are key determinants of thyroid cancer progression. TERT promoter mutations (TPM) create de novo consensus binding sites for the ETS ("E26 transformation specific") family of transcription factors. In this study, we systematically knocked down each of the 20 ETS factors expressed in thyroid tumors and screened their effects on TERT expression in seven thyroid cancer cell lines with defined TPM status. We observed that, unlike in other TPM-carrying cancers such as glioblastomas, ETS factor GABPA does not unambiguously regulate transcription from the TERT mutant promoter in thyroid specimens. In fact, multiple members of the ETS family impact TERT expression, and they typically do so in a mutation-independent manner. In addition, we observe that partial inhibition of MAPK, a central pathway in thyroid cancer transformation, is more effective at suppressing TERT transcription in the absence of TPMs. Taken together, our results show a more complex scenario of TERT regulation in thyroid cancers compared with other lineages and suggest that compensatory mechanisms by ETS and other regulators likely exist and advocate for the need for a more comprehensive understanding of the mechanisms of TERT deregulation in thyroid tumors before eventually exploring TPM-specific therapeutic strategies.

3.
Cancer Discov ; 11(5): 1158-1175, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33318036

RESUMO

Mutations of subunits of the SWI/SNF chromatin remodeling complexes occur commonly in cancers of different lineages, including advanced thyroid cancers. Here we show that thyroid-specific loss of Arid1a, Arid2, or Smarcb1 in mouse BRAFV600E-mutant tumors promotes disease progression and decreased survival, associated with lesion-specific effects on chromatin accessibility and differentiation. As compared with normal thyrocytes, BRAFV600E-mutant mouse papillary thyroid cancers have decreased lineage transcription factor expression and accessibility to their target DNA binding sites, leading to impairment of thyroid-differentiated gene expression and radioiodine incorporation, which is rescued by MAPK inhibition. Loss of individual SWI/SNF subunits in BRAF tumors leads to a repressive chromatin state that cannot be reversed by MAPK pathway blockade, rendering them insensitive to its redifferentiation effects. Our results show that SWI/SNF complexes are central to the maintenance of differentiated function in thyroid cancers, and their loss confers radioiodine refractoriness and resistance to MAPK inhibitor-based redifferentiation therapies. SIGNIFICANCE: Reprogramming cancer differentiation confers therapeutic benefit in various disease contexts. Oncogenic BRAF silences genes required for radioiodine responsiveness in thyroid cancer. Mutations in SWI/SNF genes result in loss of chromatin accessibility at thyroid lineage specification genes in BRAF-mutant thyroid tumors, rendering them insensitive to the redifferentiation effects of MAPK blockade.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Proteínas Cromossômicas não Histona/genética , Neoplasias da Glândula Tireoide/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Técnicas de Reprogramação Celular , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos , Mutação , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
4.
Cancer Discov ; 9(2): 264-281, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30305285

RESUMO

Translation initiation is orchestrated by the cap binding and 43S preinitiation complexes (PIC). Eukaryotic initiation factor 1A (EIF1A) is essential for recruitment of the ternary complex and for assembling the 43S PIC. Recurrent EIF1AX mutations in papillary thyroid cancers are mutually exclusive with other drivers, including RAS. EIF1AX mutations are enriched in advanced thyroid cancers, where they display a striking co-occurrence with RAS, which cooperates to induce tumorigenesis in mice and isogenic cell lines. The C-terminal EIF1AX-A113splice mutation is the most prevalent in advanced thyroid cancer. EIF1AX-A113splice variants stabilize the PIC and induce ATF4, a sensor of cellular stress, which is co-opted to suppress EIF2α phosphorylation, enabling a general increase in protein synthesis. RAS stabilizes c-MYC, an effect augmented by EIF1AX-A113splice. ATF4 and c-MYC induce expression of amino acid transporters and enhance sensitivity of mTOR to amino acid supply. These mutually reinforcing events generate therapeutic vulnerabilities to MEK, BRD4, and mTOR kinase inhibitors. SIGNIFICANCE: Mutations of EIF1AX, a component of the translation PIC, co-occur with RAS in advanced thyroid cancers and promote tumorigenesis. EIF1AX-A113splice drives an ATF4-induced dephosphorylation of EIF2α, resulting in increased protein synthesis. ATF4 also cooperates with c-MYC to sensitize mTOR to amino acid supply, thus generating vulnerability to mTOR kinase inhibitors. This article is highlighted in the In This Issue feature, p. 151.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Processamento Alternativo , Carcinogênese/patologia , Fator de Iniciação 1 em Eucariotos/genética , Mutação , Neoplasias da Glândula Tireoide/patologia , Proteínas ras/genética , Fator 4 Ativador da Transcrição/genética , Animais , Apoptose , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , Biossíntese de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA