Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(27): e2301096, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37256647

RESUMO

Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Hidrogéis/química , Imunoterapia , Peptídeos/química , Nanoestruturas/química , Neoplasias/terapia
2.
Colloids Surf B Biointerfaces ; 222: 113087, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36542955

RESUMO

The purpose of this study was to investigate the effect of Zn doped CaP coatings prepared by micro-arc oxidation method, as a possible approach to control MgCa1 alloy degradation. All the prepared coatings comprised a calcium deficient CaP phase. The control in this evaluation was performed with undoped CaP coating in SBF solution at body temperature (37 ± 0.5°C). The investigation involved determination of microchemical, mechanical, morphological, properties along with anticorrosive, cytocompatibility and antibacterial efficacy. The effect of sterilization process on the properties of the surfaces was also investigated. The results showed that the addition of Zn into CaP increased the corrosion resistance of MgCa1 alloy. Moreover, the adhesion strength of the coatings to MgCa1 alloy was enhanced by Zn addition. In cytotoxicity testing of the samples, extracts of the samples in MEM were incubated with L929 cells and malformation, degeneration and lysis of the cells were examined microscopically after 72 h. The results showed that all samples were cytocompatible. The degradation of MgCa1 alloy in the simulated body fluids (SBF) or DMEM was decreased by coating with CaP. Moreover, the degradation rate of CaP was further decreased by adding a small amount of Zn into the CaP matrix. The samples having CaP coatings and Zn doped CaP coating demonstrated antibacterial efficacy against E.coli. As a result, coating of magnesium alloy with Zn-doped CaP decreased the degradation rate, increased the corrosion resistance, cytocompatibility and the antibacterial effects of the alloys.


Assuntos
Ligas , Materiais Revestidos Biocompatíveis , Ligas/farmacologia , Ligas/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Bactérias , Corrosão , Antibacterianos/farmacologia , Antibacterianos/química , Zinco/farmacologia , Zinco/química , Teste de Materiais
3.
ACS Appl Mater Interfaces ; 14(1): 104-122, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958199

RESUMO

In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 µm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was -1933 mV for CaP-coated samples, was found significantly electropositive at -275 mV for Ga-doped ones. All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications.


Assuntos
Ligas/química , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Implantes Absorvíveis , Ligas/toxicidade , Animais , Cálcio/química , Cálcio/toxicidade , Fosfatos de Cálcio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Corrosão , Módulo de Elasticidade , Gálio/química , Gálio/toxicidade , Humanos , Magnésio/química , Magnésio/toxicidade , Teste de Materiais , Camundongos , Molhabilidade , Zinco/química , Zinco/toxicidade
4.
J Biomater Sci Polym Ed ; 32(8): 1072-1106, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33720806

RESUMO

Use of materials to activate non-functional or damaged organs and tissues goes back to early ages. The first materials used for this purpose were metals, and in time, novel materials such as ceramics, polymers and composites were introduced to the field to serve in medical applications. In the last decade, the advances in material sciences, cell biology, technology and engineering made 3D printing of living tissues or organ models in the designed structure and geometry possible by using cells alone or together with hydrogels through additive manufacturing. This review aims to give a brief information about the chemical structures and properties of bioink materials and their applications in the production of 3D tissue constructs.


Assuntos
Bioimpressão , Materiais Biocompatíveis , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
5.
Artigo em Inglês | MEDLINE | ID: mdl-31338366

RESUMO

Three-dimensional (3D) and Four-dimensional (4D) printing emerged as the next generation of fabrication techniques, spanning across various research areas, such as engineering, chemistry, biology, computer science, and materials science. Three-dimensional printing enables the fabrication of complex forms with high precision, through a layer-by-layer addition of different materials. Use of intelligent materials which change shape or color, produce an electrical current, become bioactive, or perform an intended function in response to an external stimulus, paves the way for the production of dynamic 3D structures, which is now called 4D printing. 3D and 4D printing techniques have great potential in the production of scaffolds to be applied in tissue engineering, especially in constructing patient specific scaffolds. Furthermore, physical and chemical guidance cues can be printed with these methods to improve the extent and rate of targeted tissue regeneration. This review presents a comprehensive survey of 3D and 4D printing methods, and the advantage of their use in tissue regeneration over other scaffold production approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA