Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0262107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139093

RESUMO

Ultrasound imaging is a vital component of high-quality Obstetric care. In rural and under-resourced communities, the scarcity of ultrasound imaging results in a considerable gap in the healthcare of pregnant mothers. To increase access to ultrasound in these communities, we developed a new automated diagnostic framework operated without an experienced sonographer or interpreting provider for assessment of fetal biometric measurements, fetal presentation, and placental position. This approach involves the use of a standardized volume sweep imaging (VSI) protocol based solely on external body landmarks to obtain imaging without an experienced sonographer and application of a deep learning algorithm (U-Net) for diagnostic assessment without a radiologist. Obstetric VSI ultrasound examinations were performed in Peru by an ultrasound operator with no previous ultrasound experience who underwent 8 hours of training on a standard protocol. The U-Net was trained to automatically segment the fetal head and placental location from the VSI ultrasound acquisitions to subsequently evaluate fetal biometry, fetal presentation, and placental position. In comparison to diagnostic interpretation of VSI acquisitions by a specialist, the U-Net model showed 100% agreement for fetal presentation (Cohen's κ 1 (p<0.0001)) and 76.7% agreement for placental location (Cohen's κ 0.59 (p<0.0001)). This corresponded to 100% sensitivity and specificity for fetal presentation and 87.5% sensitivity and 85.7% specificity for anterior placental location. The method also achieved a low relative error of 5.6% for biparietal diameter and 7.9% for head circumference. Biometry measurements corresponded to estimated gestational age within 2 weeks of those assigned by standard of care examination with up to 89% accuracy. This system could be deployed in rural and underserved areas to provide vital information about a pregnancy without a trained sonographer or interpreting provider. The resulting increased access to ultrasound imaging and diagnosis could improve disparities in healthcare delivery in under-resourced areas.


Assuntos
Placenta , Feminino , Humanos , Gravidez
2.
PLoS One ; 16(8): e0255919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34379679

RESUMO

BACKGROUND: Hepatic and biliary diseases are prevalent worldwide, but the majority of people lack access to diagnostic medical imaging for their assessment. The liver and gallbladder are readily amenable to sonographic examination, and ultrasound is a portable, cost-effective imaging modality suitable for use in rural and underserved areas. However, the deployment of ultrasound in these settings is limited by the lack of experienced sonographers to perform the exam. In this study, we tested an asynchronous telediagnostic system for right upper quadrant abdominal ultrasound examination operated by individuals without prior ultrasound experience to facilitate deployment of ultrasound to rural and underserved areas. METHODS: The teleultrasound system utilized in this study employs volume sweep imaging and a telemedicine app installed on a tablet which connects to an ultrasound machine. Volume sweep imaging is an ultrasound technique in which an individual scans the target region utilizing preset ultrasound sweeps demarcated by easily recognized external body landmarks. The sweeps are saved as video clips for later interpretation by an experienced radiologist. Teleultrasound scans from a Peruvian clinic obtained by individuals without prior ultrasound experience were sent to the United States for remote interpretation and quality assessment. Standard of care comparison was made to a same-day ultrasound examination performed by a radiologist. RESULTS: Individuals without prior ultrasound experience scanned 144 subjects. Image quality was rated "poor" on 36.8% of exams, "acceptable" on 38.9% of exams, and "excellent" on 24.3% of exams. Among telemedicine exams of "acceptable" or "excellent" image quality (n = 91), greater than 80% of the liver and gallbladder were visualized in the majority of cases. In this group, there was 95% agreement between standard of care and teleultrasound on whether an exam was normal or abnormal, with a Cohen's kappa of 0.84 (95% CI 0.7-0.98, p <0.0001). Finally, among these teleultrasound exams of "acceptable" or "excellent" image quality, the sensitivity for cholelithiasis was 93% (95% CI 68.1%-99.8%), and the specificity was 97% (95% CI 89.5%-99.6%). CONCLUSION: This asynchronous telediagnostic system allows individuals without prior ultrasound experience to effectively scan the liver, gallbladder, and right kidney with a high degree of agreement with standard of care ultrasound. This system can be deployed to improve access to diagnostic imaging in low-resource areas.


Assuntos
Abdome/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Telemedicina , Ultrassonografia , Colelitíase/diagnóstico , Fígado Gorduroso/diagnóstico , Humanos , Área Carente de Assistência Médica , Peru , População Rural , Sensibilidade e Especificidade
3.
BMC Pregnancy Childbirth ; 21(1): 328, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902496

RESUMO

BACKGROUND: Ninety-four percent of all maternal deaths occur in low- and middle-income countries, and the majority are preventable. Access to quality Obstetric ultrasound can identify some complications leading to maternal and neonatal/perinatal mortality or morbidity and may allow timely referral to higher-resource centers. However, there are significant global inequalities in access to imaging and many challenges to deploying ultrasound to rural areas. In this study, we tested a novel, innovative Obstetric telediagnostic ultrasound system in which the imaging acquisitions are obtained by an operator without prior ultrasound experience using simple scan protocols based only on external body landmarks and uploaded using low-bandwidth internet for asynchronous remote interpretation by an off-site specialist. METHODS: This is a single-center pilot study. A nurse and care technician underwent 8 h of training on the telediagnostic system. Subsequently, 126 patients (68 second trimester and 58 third trimester) were recruited at a health center in Lima, Peru and scanned by these ultrasound-naïve operators. The imaging acquisitions were uploaded by the telemedicine platform and interpreted remotely in the United States. Comparison of telediagnostic imaging was made to a concurrently performed standard of care ultrasound obtained and interpreted by an experienced attending radiologist. Cohen's Kappa was used to test agreement between categorical variables. Intraclass correlation and Bland-Altman plots were used to test agreement between continuous variables. RESULTS: Obstetric ultrasound telediagnosis showed excellent agreement with standard of care ultrasound allowing the identification of number of fetuses (100% agreement), fetal presentation (95.8% agreement, κ =0.78 (p < 0.0001)), placental location (85.6% agreement, κ =0.74 (p < 0.0001)), and assessment of normal/abnormal amniotic fluid volume (99.2% agreement) with sensitivity and specificity > 95% for all variables. Intraclass correlation was good or excellent for all fetal biometric measurements (0.81-0.95). The majority (88.5%) of second trimester ultrasound exam biometry measurements produced dating within 14 days of standard of care ultrasound. CONCLUSION: This Obstetric ultrasound telediagnostic system is a promising means to increase access to diagnostic Obstetric ultrasound in low-resource settings. The telediagnostic system demonstrated excellent agreement with standard of care ultrasound. Fetal biometric measurements were acceptable for use in the detection of gross discrepancies in fetal size requiring further follow up.


Assuntos
Assistência Perinatal , Consulta Remota/métodos , Desenvolvimento de Pessoal , Telemedicina/métodos , Ultrassonografia Pré-Natal , Diagnóstico Precoce , Intervenção Médica Precoce/normas , Feminino , Humanos , Obstetrícia/educação , Assistência Perinatal/métodos , Assistência Perinatal/normas , Peru/epidemiologia , Testes Imediatos/organização & administração , Gravidez , Trimestres da Gravidez , Melhoria de Qualidade/organização & administração , Serviços de Saúde Rural/normas , Serviços de Saúde Rural/tendências , Enfermagem Rural/métodos , Desenvolvimento de Pessoal/métodos , Desenvolvimento de Pessoal/organização & administração , Ultrassonografia Pré-Natal/métodos , Ultrassonografia Pré-Natal/normas
4.
J Ultrasound Med ; 40(3): 583-595, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32798267

RESUMO

Billions of people around the world lack access to diagnostic imaging. To address this issue, we piloted a comprehensive ultrasound telediagnostic system, which uses ultrasound volume sweep imaging (VSI) acquisitions capable of being performed by operators without prior traditional ultrasound training and new telemedicine software capable of sending imaging acquisitions asynchronously over low Internet bandwidth for remote interpretation. The telediagnostic system was tested with obstetric, right upper quadrant abdominal, and thyroid volume sweep imaging protocols in Peru. Scans obtained by operators without prior ultrasound experience were sent for remote interpretation by specialists using the telemedicine platform. Scans obtained allowed visualization of the target region in 96% of cases with diagnostic imaging quality. This telediagnostic system shows promise in improving health care disparities in the developing world.


Assuntos
Telemedicina , Feminino , Humanos , Peru , Gravidez , Software , Ultrassonografia
5.
J Clin Imaging Sci ; 9: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31538033

RESUMO

OBJECTIVE: Pneumonia is the leading cause of pediatric mortality worldwide among children 0-5 years old. Lung ultrasound can be used to diagnose pneumonia in rural areas as it is a portable and relatively economic imaging modality with ~95% sensitivity and specificity for pneumonia in children. Lack of trained sonographers is the current limiting factor to its deployment in rural areas. In this study, we piloted training of a volume sweep imaging (VSI) ultrasound protocol for pneumonia detection in Peru with rural health workers. VSI may be taught to individuals with limited medical/ultrasound experience as it requires minimal anatomical knowledge and technical skill. In VSI, the target organ is imaged with a series of sweeps and arcs of the ultrasound probe in relation to external body landmarks. METHODS: Rural health workers in Peru were trained on a VSI ultrasound protocol for pneumonia detection. Subjects were given a brief didactic session followed by hands-on practice with the protocol. Each attempt was timed and mistakes were recorded. Participants performed the protocol until they demonstrated two mistake-free attempts. RESULTS: It took participants a median number of three attempts (range 1-6) to perform the VSI protocol correctly. Time to mastery took 51.4 ± 17.7 min. There were no significant differences among doctors, nurses, and technicians in total training time (P = 0.43) or number of attempts to success (P = 0.72). Trainee age was not found to be significantly correlated with training time (P = 0.50) or number of attempts to success (P = 0.40). CONCLUSION: Rural health workers learned a VSI protocol for pneumonia detection with relative ease in a short amount of time. Future studies should investigate the clinical efficacy of this VSI protocol for pneumonia detection. KEY MESSAGE: A volume sweep imaging (VSI) protocol for pneumonia detection can be taught with minimal difficulty to rural health workers without prior ultrasound experience. No difference was found in training performance related to education level or age. VSI involves no significant knowledge of anatomy or technical skill.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA