RESUMO
In a healthy colon, the stratified mucus layer serves as a crucial innate immune barrier to protect the epithelium from microbes. Mucins are complex glycoproteins that serve as a nutrient source for resident microflora and can be exploited by pathogens. We aimed to understand how the intestinal pathogen, Clostridioides difficile, independently uses or manipulates mucus to its benefit, without contributions from members of the microbiota. Using a 2-D primary human intestinal epithelial cell model to generate physiologic mucus, we assessed C. difficile-mucus interactions through growth assays, RNA-Seq, biophysical characterization of mucus, and contextualized metabolic modeling. We found that host-derived mucus promotes C. difficile growth both in vitro and in an infection model. RNA-Seq revealed significant upregulation of genes related to central metabolism in response to mucus, including genes involved in sugar uptake, the Wood-Ljungdahl pathway, and the glycine cleavage system. In addition, we identified differential expression of genes related to sensing and transcriptional control. Analysis of mutants with deletions in highly upregulated genes reflected the complexity of C. difficile-mucus interactions, with potential interplay between sensing and growth. Mucus also stimulated biofilm formation in vitro, which may in turn alter the viscoelastic properties of mucus. Context-specific metabolic modeling confirmed differential metabolism and the predicted importance of enzymes related to serine and glycine catabolism with mucus. Subsequent growth experiments supported these findings, indicating mucus is an important source of serine. Our results better define responses of C. difficile to human gastrointestinal mucus and highlight flexibility in metabolism that may influence pathogenesis. IMPORTANCE: Clostridioides difficile results in upward of 250,000 infections and 12,000 deaths annually in the United States. Community-acquired infections continue to rise, and recurrent disease is common, emphasizing a vital need to understand C. difficile pathogenesis. C. difficile undoubtedly interacts with colonic mucus, but the extent to which the pathogen can independently respond to and take advantage of this niche has not been explored extensively. Moreover, the metabolic complexity of C. difficile remains poorly understood but likely impacts its capacity to grow and persist in the host. Here, we demonstrate that C. difficile uses native colonic mucus for growth, indicating C. difficile possesses mechanisms to exploit the mucosal niche. Furthermore, mucus induces metabolic shifts and biofilm formation in C. difficile, which has potential ramifications for intestinal colonization. Overall, our work is crucial to better understand the dynamics of C. difficile-mucus interactions in the context of the human gut.
Assuntos
Biofilmes , Clostridioides difficile , Regulação Bacteriana da Expressão Gênica , Muco , Clostridioides difficile/genética , Clostridioides difficile/fisiologia , Clostridioides difficile/metabolismo , Biofilmes/crescimento & desenvolvimento , Humanos , Muco/microbiologia , Muco/metabolismo , Células Epiteliais/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Infecções por Clostridium/microbiologiaRESUMO
A complex and dynamic network of interactions exists between human gastrointestinal epithelium and intestinal microbiota. Therefore, comprehending intestinal microbe-epithelial cell interactions is critical for the understanding and treatment of intestinal diseases. Primary human colonic epithelial cells derived from a healthy human donor were co-cultured with Clostridium scindens (C. scindens), a probiotic obligate anaerobe; Staphylococcus aureus (S. aureus), a facultative anaerobe and intestinal pathogen; or both bacterial species in tandem. The co-culture hanging basket platform used for these experiments possessed walls of controlled oxygen (O2) permeability to support the formation of an O2 gradient across the intestinal epithelium using cellular O2 consumption, resulting in an anaerobic luminal and aerobic basal compartment. Both the colonic epithelial cells and C. scindens remained viable over 48 h during co-culture. In contrast, co-culture with S. aureus elicited significant damage to colonic epithelial cells within 24 h. To explore the influence of the intestinal pathogen on the epithelium in the presence of the probiotic bacteria, colonic epithelial cells were inoculated sequentially with the two bacterial species. Under these conditions, C. scindens was capable of repressing the production of S. aureus enterotoxin. Surprisingly, although C. scindens converted cholic acid to secondary bile acids in the luminal medium, the growth of S. aureus was not significantly inhibited. Nevertheless, this combination of probiotic and pathogenic bacteria was found to benefit the survival of the colonic epithelial cells compared with co-culture of the epithelial cells with S. aureus alone. This platform thus provides an easy-to-use and low-cost tool to study the interaction between intestinal bacteria and colonic cells in vitro to better understand the interplay of intestinal microbiota with human colonic epithelium.
RESUMO
In a healthy colon, the stratified mucus layer serves as a crucial innate immune barrier to protect the epithelium from microbes. Mucins are complex glycoproteins that serve as a nutrient source for resident microflora and can be exploited by pathogens. We aimed to understand how the intestinal pathogen, Clostridioides diffiicile, independently uses or manipulates mucus to its benefit, without contributions from members of the microbiota. Using a 2-D primary human intestinal epithelial cell model to generate physiologic mucus, we assessed C. difficile-mucus interactions through growth assays, RNA-Seq, biophysical characterization of mucus, and contextualized metabolic modeling. We found that host-derived mucus promotes C. difficile growth both in vitro and in an infection model. RNA-Seq revealed significant upregulation of genes related to central metabolism in response to mucus, including genes involved in sugar uptake, the Wood-Ljungdahl pathway, and the glycine cleavage system. In addition, we identified differential expression of genes related to sensing and transcriptional control. Analysis of mutants with deletions in highly upregulated genes reflected the complexity of C. difficile-mucus interactions, with potential interplay between sensing and growth. Mucus also stimulated biofilm formation in vitro, which may in turn alter viscoelastic properties of mucus. Context-specific metabolic modeling confirmed differential metabolism and predicted importance of enzymes related to serine and glycine catabolism with mucus. Subsequent growth experiments supported these findings, indicating mucus is an important source of serine. Our results better define responses of C. difficile to human gastrointestinal mucus and highlight a flexibility in metabolism that may influence pathogenesis.
RESUMO
Clostridioides difficile is an intestinal pathogen that exhibits phase variation of flagella and toxins through inversion of the flagellar (flg) switch controlling flagellar and toxin gene expression. The transcription termination factor Rho preferentially inhibits swimming motility of bacteria with the 'flg-OFF' switch sequence. How C. difficile Rho mediates this selectivity was unknown. C. difficile Rho contains an N-terminal insertion domain (NID) which is found in a subset of Rho orthologues and confers diverse functions. Here we determined how Rho distinguishes between flg-ON and -OFF mRNAs and the roles of the NID and other domains of C. difficile Rho. Using in vitro ATPase assays, we determined that Rho specifically binds a region containing the left inverted repeat of the flg switch, but only of flg-OFF mRNA, indicating that differential termination is mediated by selective Rho binding. Using a suite of in vivo and in vitro assays in C. difficile, we determined that the NID is essential for Rho termination of flg-OFF mRNA, likely by influencing the ability to form stable hexamers, and the RNA binding domain is critical for flg-OFF specific termination. This work gives insight into the novel mechanism by which Rho interacts with flg mRNA to mediate phase variation of flagella and toxins in C. difficile and broadens our understanding of Rho-mediated termination in an organism with an AT-rich genome.
Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Clostridioides difficile , Regulação Bacteriana da Expressão Gênica , Variação de Fase , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Flagelos/genética , Flagelos/metabolismo , RNA Mensageiro/metabolismoRESUMO
The opportunistic nosocomial pathogen Clostridioides difficile exhibits phenotypic heterogeneity through phase variation, a stochastic, reversible process that modulates expression. In C. difficile, multiple sequences in the genome undergo inversion through site-specific recombination. Two such loci lie upstream of pdcB and pdcC, which encode phosphodiesterases (PDEs) that degrade the signaling molecule c-di-GMP. Numerous phenotypes are influenced by c-di-GMP in C. difficile including cell and colony morphology, motility, colonization, and virulence. In this study, we aimed to assess whether PdcB phase varies, identify the mechanism of regulation, and determine the effects on intracellular c-di-GMP levels and regulated phenotypes. We found that expression of pdcB is heterogeneous and the orientation of the invertible sequence, or 'pdcB switch', determines expression. The pdcB switch contains a promoter that when properly oriented promotes pdcB expression. Expression is augmented by an additional promoter upstream of the pdcB switch. Mutation of nucleotides at the site of recombination resulted in phase-locked strains with significant differences in pdcB expression. Characterization of these mutants showed that the pdcB locked-ON mutant has reduced intracellular c-di-GMP compared to the locked-OFF mutant, consistent with increased and decreased PdcB activity, respectively. These alterations in c-di-GMP had concomitant effects on multiple known c-di-GMP regulated processes, indicating that phase variation of PdcB allows C. difficile to coordinately diversify multiple phenotypes in the population to enhance survival.
Assuntos
Proteínas de Bactérias , Clostridioides difficile , Diester Fosfórico Hidrolases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Variação de Fase , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismoRESUMO
Clostridioides difficile is a major nosocomial pathogen that can cause severe, toxin-mediated diarrhea and pseudomembranous colitis. Recent work has shown that C. difficile exhibits heterogeneity in swimming motility and toxin production in vitro through phase variation by site-specific DNA recombination. The recombinase RecV reversibly inverts the flagellar switch sequence upstream of the flgB operon, leading to the ON/OFF expression of flagellum and toxin genes. How this phenomenon impacts C. difficile virulence in vivo remains unknown. We identified mutations in the right inverted repeat that reduced or prevented flagellar switch inversion by RecV. We introduced these mutations into C. difficile R20291 to create strains with the flagellar switch "locked" in either the ON or OFF orientation. These mutants exhibited a loss of flagellum and toxin phase variation during growth in vitro, yielding precisely modified mutants suitable for assessing virulence in vivo. In a hamster model of acute C. difficile infection, the phase-locked ON mutant caused greater toxin accumulation than the phase-locked OFF mutant but did not differ significantly in the ability to cause acute disease symptoms. In contrast, in a mouse model, preventing flagellum and toxin phase variation affected the ability of C. difficile to colonize the intestinal tract and to elicit weight loss, which is attributable to differences in toxin production during infection. These results show that the ability of C. difficile to phase vary flagella and toxins influences colonization and disease development and suggest that the phenotypic variants generated by flagellar switch inversion have distinct capacities for causing disease.
Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Infecções por Clostridium/metabolismo , Cricetinae , Modelos Animais de Doenças , Flagelos/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Variação de FaseRESUMO
The formation of dormant spores is essential for the anaerobic pathogen Clostridioides difficile to survive outside the host gastrointestinal tract. The regulatory pathways and environmental signals that initiate C. difficile spore formation within the host are not well understood. One second-messenger signaling molecule, cyclic diguanylate (c-di-GMP), modulates several physiological processes important for C. difficile pathogenesis and colonization, but the impact of c-di-GMP on sporulation is unknown. In this study, we investigated the contribution of c-di-GMP to C. difficile sporulation. The overexpression of a gene encoding a diguanylate cyclase, dccA, decreased the sporulation frequency and early sporulation gene transcription in both the epidemic R20291 and historical 630Δerm strains. The expression of a dccA allele encoding a catalytically inactive DccA that is unable to synthesize c-di-GMP no longer inhibited sporulation, indicating that the accumulation of intracellular c-di-GMP reduces C. difficile sporulation. A null mutation in dccA slightly increased sporulation in R20291 and slightly decreased sporulation in 630Δerm, suggesting that DccA contributes to the intracellular pool of c-di-GMP in a strain-dependent manner. However, these data were highly variable, underscoring the complex regulation involved in modulating intracellular c-di-GMP concentrations. Finally, the overexpression of dccA in known sporulation mutants revealed that c-di-GMP is likely signaling through an unidentified regulatory pathway to control early sporulation events in C. difficile. c-di-GMP-dependent regulation of C. difficile sporulation may represent an unexplored avenue of potential environmental and intracellular signaling that contributes to the complex regulation of sporulation initiation. IMPORTANCE Many bacterial organisms utilize the small signaling molecule cyclic diguanylate (c-di-GMP) to regulate important physiological processes, including motility, toxin production, biofilm formation, and colonization. c-di-GMP inhibits motility and toxin production and promotes biofilm formation and colonization in the anaerobic, gastrointestinal pathogen Clostridioides difficile. However, the impact of c-di-GMP on C. difficile spore formation, a critical step in this pathogen's life cycle, is unknown. Here, we demonstrate that c-di-GMP negatively impacts sporulation in two clinically relevant C. difficile strains, the epidemic strain R20291 and the historical strain 630Δerm. The pathway through which c-di-GMP controls sporulation was investigated, and our results suggest that c-di-GMP is likely signaling through an unidentified regulatory pathway to control C. difficile sporulation. This work implicates c-di-GMP metabolism as a mechanism to integrate environmental and intracellular cues through c-di-GMP levels to influence C. difficile sporulation.
Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , GMP Cíclico/análogos & derivados , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/genética , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologiaRESUMO
The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of hospital-acquired infection in the United States. Due to growing antibiotic resistance and recurrent infection, targeting C. difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hypervirulent isolate (strain [str.] R20291) and a historic strain (str. 630), validating both with in vitro and in vivo data sets. Growth simulations revealed significant correlations with measured carbon source usage (positive predictive value [PPV] ≥ 92.7%), and single-gene deletion analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated from in vitro and infection conditions, we discovered reliance on the pentose phosphate pathway as well as increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was subsequently supported experimentally. Our results highlight the ability of GENREs to identify novel metabolite signals in higher-order phenotypes like bacterial pathogenesis. IMPORTANCE Clostridioides difficile has become the leading single cause of hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled systematic investigation of the genetic and metabolic properties that contribute to downstream virulence phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a well-studied laboratory strain (str. 630) and a more recently characterized hypervirulent isolate (str. R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene essentiality and carbon source utilization data sets. Subsequent exploration of context-specific metabolism during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with experimentally measured increases in virulence factor expression. Our results support that differential C. difficile virulence is associated with distinct metabolic programs related to use of carbon sources and provide a platform for identification of novel therapeutic targets.
RESUMO
BACKGROUND: Prebiotic galacto-oligosaccharides (GOS) have an extensively demonstrated beneficial impact on intestinal health. In this study, we determined the impact of GOS diets on hallmarks of gut aging: microbiome dysbiosis, inflammation, and intestinal barrier defects ("leaky gut"). We also evaluated if short-term GOS feeding influenced how the aging gut responded to antibiotic challenges in a mouse model of Clostridioides difficile infection. Finally, we assessed if colonic organoids could reproduce the GOS responder-non-responder phenotypes observed in vivo. RESULTS: Old animals had a distinct microbiome characterized by increased ratios of non-saccharolytic versus saccharolytic bacteria and, correspondingly, a lower abundance of ß-galactosidases compared to young animals. GOS reduced the overall diversity, increased the abundance of specific saccharolytic bacteria (species of Bacteroides and Lactobacillus), increased the abundance of ß-galactosidases in young and old animals, and increased the non-saccharolytic organisms; however, a robust, homogeneous bifidogenic effect was not observed. GOS reduced age-associated increased intestinal permeability and increased MUC2 expression and mucus thickness in old mice. Clyndamicin reduced the abundance Bifidobacterium while increasing Akkermansia, Clostridium, Coprococcus, Bacillus, Bacteroides, and Ruminococcus in old mice. The antibiotics were more impactful than GOS on modulating serum markers of inflammation. Higher serum levels of IL-17 and IL-6 were observed in control and GOS diets in the antibiotic groups, and within those groups, levels of IL-6 were higher in the GOS groups, regardless of age, and higher in the old compared to young animals in the control diet groups. RTqPCR revealed significantly increased gene expression of TNFα in distal colon tissue of old mice, which was decreased by the GOS diet. Colon transcriptomics analysis of mice fed GOS showed increased expression of genes involved in small-molecule metabolic processes and specifically the respirasome in old animals, which could indicate an increased oxidative metabolism and energetic efficiency. In young mice, GOS induced the expression of binding-related genes. The galectin gene Lgals1, a ß-galactosyl-binding lectin that bridges molecules by their sugar moieties and is an important modulator of the immune response, and the PI3K-Akt and ECM-receptor interaction pathways were also induced in young mice. Stools from mice exhibiting variable bifidogenic response to GOS injected into colon organoids in the presence of prebiotics reproduced the response and non-response phenotypes observed in vivo suggesting that the composition and functionality of the microbiota are the main contributors to the phenotype. CONCLUSIONS: Dietary GOS modulated homeostasis of the aging gut by promoting changes in microbiome composition and host gene expression, which was translated into decreased intestinal permeability and increased mucus production. Age was a determining factor on how prebiotics impacted the microbiome and expression of intestinal epithelial cells, especially apparent from the induction of galectin-1 in young but not old mice. Video abstract.
Assuntos
Envelhecimento/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/farmacologia , Prebióticos , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Feminino , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the "cmr switch," and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.
Assuntos
Proteínas de Bactérias , Clostridioides difficile , Animais , Proteínas de Bactérias/metabolismo , Clostridioides difficile/genética , Clostridioides/metabolismo , Transdução de Sinais/genética , Sistemas do Segundo Mensageiro , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , BiofilmesRESUMO
Many bacterial species generate phenotypically heterogeneous subpopulations as a strategy for ensuring the survival of the population as a whole - an environmental stress that eradicates one subpopulation may leave other phenotypic groups unharmed, allowing the lineage to continue. Phase variation, a process that functions as an ON/OFF switch for gene expression, is one way that bacteria achieve phenotypic heterogeneity. Phase variation occurs stochastically and reversibly, and in the presence of a selective pressure the advantageous phenotype(s) predominates in the population. Phase variation can occur through multiple genetic and epigenetic mechanisms. This review focuses on conservative site-specific recombination that generates reversible DNA inversions as a genetic mechanism mediating phase variation. Recent studies have sparked a renewed interest in phase variation mediated through DNA inversion, revealing a high level of complexity beyond simple ON/OFF switching, including unusual modes of gene regulation, and highlighting an underappreciation of the use of these mechanisms by bacteria.
Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Inversão Cromossômica , DNA Bacteriano/genética , Epigênese Genética , Fenótipo , Recombinação Genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão GênicaRESUMO
The intestinal pathogen Clostridioides difficile exhibits heterogeneity in motility and toxin production. This phenotypic heterogeneity is achieved through phase variation by site-specific recombination via the DNA recombinase RecV, which reversibly inverts the "flagellar switch" upstream of the flgB operon. A recV mutation prevents flagellar switch inversion and results in phenotypically locked strains. The orientation of the flagellar switch influences expression of the flgB operon post-transcription initiation, but the specific molecular mechanism is unknown. Here, we report the isolation and characterization of spontaneous suppressor mutants in the non-motile, non-toxigenic recV flg OFF background that regained motility and toxin production. The restored phenotypes corresponded with increased expression of flagellum and toxin genes. The motile suppressor mutants contained single-nucleotide polymorphisms (SNPs) in rho, which encodes the bacterial transcription terminator Rho factor. Analyses using transcriptional reporters indicate that Rho contributes to heterogeneity in flagellar gene expression by preferentially terminating transcription of flg OFF mRNA within the 5' leader sequence. Additionally, Rho is important for initial colonization of the intestine in a mouse model of infection, which may in part be due to the sporulation and growth defects observed in the rho mutants. Together these data implicate Rho factor as a regulator of gene expression affecting phase variation of important virulence factors of C. difficile.
Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Flagelos/metabolismo , Fator Rho/metabolismo , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Feminino , Proteínas Filagrinas , Flagelos/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óperon , Fator Rho/genética , VirulênciaRESUMO
Clostridioides (formerly Clostridium) difficile is a leading cause of healthcare-associated infections. Although considerable progress has been made in the understanding of its genome, the epigenome of C. difficile and its functional impact has not been systematically explored. Here, we perform a comprehensive DNA methylome analysis of C. difficile using 36 human isolates and observe a high level of epigenomic diversity. We discovered an orphan DNA methyltransferase with a well-defined specificity, the corresponding gene of which is highly conserved across our dataset and in all of the approximately 300 global C. difficile genomes examined. Inactivation of the methyltransferase gene negatively impacts sporulation, a key step in C. difficile disease transmission, and these results are consistently supported by multiomics data, genetic experiments and a mouse colonization model. Further experimental and transcriptomic analyses suggest that epigenetic regulation is associated with cell length, biofilm formation and host colonization. These findings provide a unique epigenetic dimension to characterize medically relevant biological processes in this important pathogen. This study also provides a set of methods for comparative epigenomics and integrative analysis, which we expect to be broadly applicable to bacterial epigenomic studies.
Assuntos
Clostridioides difficile/enzimologia , Clostridioides difficile/fisiologia , Clostridioides difficile/patogenicidade , Metilases de Modificação do DNA/metabolismo , Epigênese Genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Cricetinae , Metilação de DNA , Metilases de Modificação do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Epigenoma , Regulação Bacteriana da Expressão Gênica , Variação Genética , Genoma Bacteriano/genética , Humanos , Camundongos , Mutação , Motivos de Nucleotídeos , Filogenia , Elementos Reguladores de Transcrição/genética , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia , Especificidade por SubstratoRESUMO
Recent work has revealed that Clostridioides difficile, a major cause of nosocomial diarrheal disease, exhibits phenotypic heterogeneity within a clonal population as a result of phase variation. Many C. difficile strains representing multiple ribotypes develop two colony morphotypes, termed rough and smooth, but the biological implications of this phenomenon have not been explored. Here, we examine the molecular basis and physiological relevance of the distinct colony morphotypes produced by this bacterium. We show that C. difficile reversibly differentiates into rough and smooth colony morphologies and that bacteria derived from the isolates display discrete motility behaviors. We identified an atypical phase-variable signal transduction system consisting of a histidine kinase and two response regulators, named herein colony morphology regulators RST (CmrRST), which mediates the switch in colony morphology and motility behaviors. The CmrRST-regulated surface motility is independent of flagella and type IV pili, suggesting a novel mechanism of cell migration in C. difficile. Microscopic analysis of cell and colony structure indicates that CmrRST promotes the formation of elongated bacteria arranged in bundled chains, which may contribute to bacterial migration on surfaces. In a hamster model of acute C. difficile disease, the CmrRST system is required for disease development. Furthermore, we provide evidence that CmrRST phase varies during infection, suggesting that the intestinal environment impacts the proportion of CmrRST-expressing C. difficile. Our findings indicate that C. difficile employs phase variation of the CmrRST signal transduction system to generate phenotypic heterogeneity during infection, with concomitant effects on bacterial physiology and pathogenesis.
Assuntos
Proteínas de Bactérias/genética , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Transdução de Sinais/genética , Animais , Proteínas de Bactérias/metabolismo , Células Clonais , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Clostridioides difficile/ultraestrutura , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Cricetulus , Modelos Animais de Doenças , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Flagelos/metabolismo , Flagelos/ultraestrutura , Histidina Quinase/metabolismo , Humanos , Movimento , Fenótipo , RibotipagemRESUMO
An oxygen gradient formed along the length of colonic crypts supports stem-cell proliferation at the normoxic crypt base while supporting obligate anaerobe growth in the anoxic colonic lumen. Primary human colonic epithelial cells derived from human gastrointestinal stem cells were cultured within a device possessing materials of tailored oxygen permeability to produce an oxygen-depleted luminal (0.8% ± 0.1% O2) and oxygen-rich basal (11.1% ± 0.5% O2) compartment. This oxygen difference created a stable oxygen gradient across the colonic epithelial cells which remained viable and properly polarized. Facultative and obligate anaerobes Lactobacillus rhamnosus, Bifidobacterium adolescentis, and Clostridium difficile grew readily within the luminal compartment. When formed along the length of an in vitro crypt, the oxygen gradient facilitated cell compartmentalization within the crypt by enhancing confinement of the proliferative cells to the crypt base. This platform provides a simple system to create a physiological oxygen gradient across an intestinal mimic while simultaneously supporting anaerobe co-culture.
Assuntos
Colo/metabolismo , Colo/microbiologia , Técnicas In Vitro/métodos , Oxigênio/metabolismo , Células-Tronco/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proliferação de Células , Células Cultivadas , Colo/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Humanos , Intestinos , Modelos Biológicos , Células-Tronco/citologiaRESUMO
Regulation of bacterial motility to maximize nutrient acquisition or minimize exposure to harmful substances plays an important role in microbial proliferation and host colonization. The technical difficulties of performing high-resolution live microscopy on anaerobes have hindered mechanistic studies of motility in Clostridioides (formerly Clostridium) difficile. Here, we present a widely applicable protocol for live cell imaging of anaerobic bacteria that has allowed us to characterize C. difficile swimming at the single-cell level. This accessible method for anaerobic live cell microscopy enables inquiry into previously inaccessible aspects of C. difficile physiology and behavior. We present the first report that vegetative C. difficile are capable of regulated motility in the presence of different nutrients. We demonstrate that the epidemic C. difficile strain R20291 exhibits regulated motility in the presence of multiple nutrient sources by modulating its swimming velocity. This is a powerful illustration of the ability of single-cell studies to explain population-wide phenomena such as dispersal through the environment.