Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Neurosurgery ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836617

RESUMO

BACKGROUND AND OBJECTIVES: Precise mapping of functional networks in patients with brain tumor is essential for tailoring personalized treatment strategies. Resting-state functional MRI (rs-fMRI) offers an alternative to task-based fMRI, capable of capturing multiple networks within a single acquisition, without necessitating task engagement. This study demonstrates a strong concordance between preoperative rs-fMRI maps and the gold standard intraoperative direct electric stimulation (DES) mapping during awake surgery. METHODS: We conducted an analysis involving 28 patients with glioma who underwent awake surgery with DES mapping. A total of 100 DES recordings were collected to map sensorimotor (SMN), language (LANG), visual (VIS), and speech articulation cognitive domains. Preoperative rs-fMRI maps were generated using an updated version of the ReStNeuMap software, specifically designed for rs-fMRI data preprocessing and automatic detection of 7 resting-state networks (SMN, LANG, VIS, speech articulation, default mode, frontoparietal, and visuospatial). To evaluate the agreement between these networks and those mapped with invasive cortical mapping, we computed patient-specific distances between them and intraoperative DES recordings. RESULTS: Automatically detected preoperative functional networks exhibited excellent agreement with intraoperative DES recordings. When we spatially compared DES points with their corresponding networks, we found that SMN, VIS, and speech articulatory DES points fell within the corresponding network (median distance = 0 mm), whereas for LANG a median distance of 1.6 mm was reported. CONCLUSION: Our findings show the remarkable consistency between key functional networks mapped noninvasively using presurgical rs-fMRI and invasive cortical mapping. This evidence highlights the utility of rs-fMRI for personalized presurgical planning, particularly in scenarios where awake surgery with DES is not feasible to protect eloquent areas during tumor resection. We have made the updated tool for automated functional network estimation publicly available, facilitating broader utilization of rs-fMRI mapping in various clinical contexts, including presurgical planning, functional reorganization over follow-up periods, and informing future treatments such as radiotherapy.

2.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730562

RESUMO

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Assuntos
Encéfalo , Crowdsourcing , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Masculino , Feminino , Adulto , Algoritmos
3.
Brain Behav Immun ; 118: 210-220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452987

RESUMO

In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI1) and after (MRI2) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI1 and MRI2. Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.


Assuntos
Substância Cinzenta , Heroína , Humanos , Ratos , Animais , Heroína/efeitos adversos , Microglia , Estudos Longitudinais , Encéfalo , Imageamento por Ressonância Magnética
4.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38463974

RESUMO

In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI 1 ) and after (MRI 2 ) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI 1 and MRI 2 . Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.

5.
Elife ; 122023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668506

RESUMO

The idea that sensory stimulation to the embryo (in utero or in ovo) may be crucial for brain development is widespread. Unfortunately, up to now evidence was only indirect because mapping of embryonic brain activity in vivo is challenging. Here, we applied for the first time manganese enhanced magnetic resonance imaging (MEMRI), a functional imaging method, to the eggs of domestic chicks. We revealed light-induced brain asymmetry by comparing embryonic brain activity in vivo of eggs that were stimulated by light or maintained in the darkness. Our protocol paves the way to investigation of the effects of a variety of sensory stimulations on brain activity in embryo.


Assuntos
Encéfalo , Manganês , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Embrião de Mamíferos , Galinhas
6.
Exp Gerontol ; 152: 111432, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062262

RESUMO

Magnetic resonance imaging (MRI) paradigms, using non-invasive approaches, can provide relevant findings about brain aging. The attention has been primarily focused on neurodegenerative diseases, while little or nothing has been done to differentiate physiology from pathology. The present study aimed to test diffusion tensor imaging (DTI) and functional MRI (fMRI) metrics to analyze physiological age-related changes in rats at myelin structure and activation level; findings were validated by ex vivo histology. The purpose is to find comparable biomarkers in rodents and humans to allow a reliable translation from pre-clinical to clinical settings. Data evidenced: i) a significantly higher cerebrospinal fluid volume in middle-aged and aged vs. young rats; ii) a progressive alteration of white matter; iii) a significant reduction of evoked activity in aged animals. These results partially mirror the age-related changes in humans and may represent a preliminary step to find reliable tools for a lifelong monitoring with a value for the clinical practice (e.g., to provide support to the early diagnosis of dementia in asymptomatic subjects).


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Envelhecimento , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ratos , Substância Branca/diagnóstico por imagem
7.
Transl Psychiatry ; 10(1): 150, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424183

RESUMO

The anterior insular cortex plays a key role in the representation of interoceptive effects of drug and natural rewards and their integration with attention, executive function, and emotions, making it a potential target region for intervention to control appetitive behaviors. Here, we investigated the effects of chemogenetic stimulation or inhibition of the anterior insula on alcohol and sucrose consumption. Excitatory or inhibitory designer receptors (DREADDs) were expressed in the anterior insula of alcohol-preferring rats by means of adenovirus-mediated gene transfer. Rats had access to either alcohol or sucrose solution during intermittent sessions. To characterize the brain network recruited by chemogenetic insula stimulation we measured brain-wide activation patterns using pharmacological magnetic resonance imaging (phMRI) and c-Fos immunohistochemistry. Anterior insula stimulation by the excitatory Gq-DREADDs significantly attenuated both alcohol and sucrose consumption, whereas the inhibitory Gi-DREADDs had no effects. In contrast, anterior insula stimulation failed to alter locomotor activity or deprivation-induced water drinking. phMRI and c-Fos immunohistochemistry revealed downstream activation of the posterior insula and medial prefrontal cortex, as well as of the mediodorsal thalamus and amygdala. Our results show the critical role of the anterior insula in regulating reward-directed behavior and delineate an insula-centered functional network associated with the effects of insula stimulation. From a translational perspective, our data demonstrate the therapeutic potential of circuit-based interventions and suggest that potentiation of insula excitability with neuromodulatory methods, such as repetitive transcranial magnetic stimulation (rTMS), could be useful in the treatment of alcohol use disorders.


Assuntos
Alcoolismo , Animais , Comportamento Apetitivo , Encéfalo , Córtex Cerebral , Imageamento por Ressonância Magnética , Ratos , Estimulação Magnética Transcraniana
8.
Addict Biol ; 25(3): e12744, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30907042

RESUMO

A few studies have reported aberrant functional connectivity in alcoholic patients, but the specific neural circuits involved remain unknown. Moreover, it is unclear whether these alterations can be reversed upon treatment. Here, we used functional MRI to study resting state connectivity in rats following chronic intermittent exposure to ethanol. Further, we evaluated the effects of SB-277011-a, a selective dopamine D3 receptor antagonist, known to decrease ethanol consumption. Alcohol-dependent and control rats (N = 13/14 per group), 3 weeks into abstinence, were administered SB-277011-a or vehicle before fMRI sessions. Resting state connectivity networks were extracted by independent component analysis. A dual-regression analysis was performed using independent component maps as spatial regressors, and the effects of alcohol history and treatment on connectivity were assessed. A history of alcohol dependence caused widespread reduction of the internal coherence of components. Weaker correlation was also found between the insula cortex (IC) and cingulate cortices, key constituents of the salience network. Similarly, reduced connectivity was observed between a component comprising the anterior insular cortex, together with the caudate putamen (CPu-AntIns), and the posterior part of the IC. On the other hand, postdependent rats showed strengthened connectivity between salience and reward networks. In particular, higher connectivity was observed between insula and nucleus accumbens, between the ventral tegmental area and the cingulate cortex and between the VTA and CPu-AntIns. Interestingly, aberrant connectivity in postdependent rats was partially restored by acute administration of SB-277011-a, which, conversely, had no significant effects in naïve rats.


Assuntos
Abstinência de Álcool , Alcoolismo/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Núcleo Accumbens/diagnóstico por imagem , Receptores de Dopamina D3/metabolismo , Área Tegmentar Ventral/diagnóstico por imagem , Alcoolismo/metabolismo , Alcoolismo/fisiopatologia , Animais , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Antagonistas de Dopamina/farmacologia , Neuroimagem Funcional , Giro do Cíngulo/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Vias Neurais , Nitrilas/farmacologia , Núcleo Accumbens/fisiopatologia , Putamen/diagnóstico por imagem , Putamen/fisiopatologia , Ratos , Ratos Wistar , Receptores de Dopamina D3/antagonistas & inibidores , Recompensa , Tetra-Hidroisoquinolinas/farmacologia
9.
J Nanosci Nanotechnol ; 19(8): 5020-5026, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913816

RESUMO

We present multifunctional, biocompatible and biodegradable magnetic nanovectors based on different polyamidoamine (PAA) polymers tailored with different diagnostic and therapeutic properties. Using maghemite nanoparticles with average size 15.5 ± 2.8 nm prepared by thermal decomposition, superparamagnetic nanovectors were obtained by coating the nanoparticles with synthetic polymers of PAA. These have a segmented copolymer structure, and bear PAA segments containing different amount of carboxyl groups per repeating units together with PEG segments. These copolymers are thought to combine the binding properties of the carboxylated PAA segments to inorganic nanoparticles, with the stealth properties of the PEG ones. The magnetic, hyperthermal and relaxometric properties of the synthesized samples were investigated. Magnetic measurements revealed that the samples are superparamagnetic at room temperature and the overall magnetic behavior is not affected by the functionalization process. Calorimetric measurements demonstrated a good heating efficiency at alternating magnetic field parameters below the human tolerability threshold (SAR of ca. 70 W/g at 260 Hz and 10.8 kA/m). 1H-NMR relaxivities were relevant compared to the values of the commercial contrast agents over the whole investigated frequency range.


Assuntos
Nanopartículas , Polímeros , Humanos , Nanopartículas/uso terapêutico , Poliaminas , Medicina de Precisão
10.
Sci Rep ; 9(1): 1397, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718628

RESUMO

Susceptibility artifacts in the vicinity of aural and nasal cavities result in significant signal drop-out and image distortion in echo planar imaging of the rat brain. These effects may limit the study of resting state functional connectivity in deep brain regions. Here, we explore the use of segmented EPI for resting state fMRI studies in the rat, and assess the relative merits of this method compared to single shot EPI. Sequences were evaluated in terms of signal-to-noise ratio, geometric distortions, data driven detection of resting state networks and group level correlations of time series. Multishot imaging provided improved SNR, temporal SNR and reduced geometric distortion in deep areas, while maintaining acceptable overall image quality in cortical regions. Resting state networks identified by independent component analysis were consistent across methods, but multishot EPI provided a more robust and accurate delineation of connectivity patterns involving deep regions typically affected by susceptibility artifacts. Importantly, segmented EPI showed reduced between-subject variability and stronger statistical significance of pairwise correlations at group level over the whole brain and in particular in subcortical regions. Multishot EPI may represent a valid alternative to snapshot methods in functional connectivity studies, particularly for the investigation of subcortical regions and deep gray matter nuclei.


Assuntos
Encéfalo/fisiologia , Imagem Ecoplanar , Rede Nervosa/fisiologia , Animais , Processamento de Imagem Assistida por Computador , Ratos Wistar , Razão Sinal-Ruído
11.
Contrast Media Mol Imaging ; 2018: 2198703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116160

RESUMO

Magnetic fluid hyperthermia (MFH) with chemically synthesized nanoparticles is currently used in clinical trials as it destroys tumor cells with an extremely localized deposition of thermal energy. In this paper, we investigated an MFH protocol based on magnetic nanoparticles naturally produced by magnetotactic bacteria: magnetosomes. The efficacy of such protocol is tested in a xenograft model of glioblastoma. Mice receive a single intratumoral injection of magnetosomes, and they are exposed three times in a week to an alternating magnetic field with concurrent temperature measurements. MRI is used to visualize the nanoparticles and to monitor tumor size before and after the treatment. Statistically significant inhibition of the tumor growth is detected in subjects exposed to the alternating magnetic field compared to control groups. Moreover, thanks to magnetosomes high transversal relaxivity, their effective delivery to the tumor tissue is monitored by MRI. It is apparent that the efficacy of this protocol is limited by inhomogeneous delivery of magnetosomes to tumor tissue. These results suggest that naturally synthesized magnetosomes could be effectively considered as theranostic agent candidates for hyperthermia based on iron oxide nanoparticles.


Assuntos
Glioblastoma/diagnóstico , Glioblastoma/terapia , Magnetossomos/química , Magnetospirillum/química , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Magnetossomos/ultraestrutura , Masculino , Camundongos Nus , Temperatura , Carga Tumoral
12.
Int J Biochem Cell Biol ; 93: 62-73, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29111382

RESUMO

During last years, evidence has been provided on the involvement of overweight and obesity in the pathogenesis and aggravation of several life-threatening diseases. Here, we demonstrate that, under appropriate administration conditions, polyhedral iron oxide nanoparticles are efficiently and safely taken up by 3T3 cell line-derived adipocytes (3T3 adipocytes) in vitro. Since these nanoparticles proved to effectively produce heat when subjected to alternating magnetic field, 3T3 adipocytes were submitted to superparamagnetic iron oxide nanoparticles-mediated hyperthermia treatment (SMHT), with the aim of modulating their lipid content. Notably, the treatment resulted in a significant delipidation persisting for at least 24h, and in the absence of cell death, damage or dedifferentiation. Interestingly, transcript expression of adipose triglyceride lipase (ATGL), a key gene involved in canonical lipolysis, was not modulated upon SMHT, suggesting the involvement of a novel/alternative mechanism in the effective lipolysis observed. By applying the same experimental conditions successfully used for 3T3 adipocytes, SMHT was able to induce delipidation also in primary cultures of human adipose-derived adult stem cells. The success of this pioneering approach in vitro opens promising perspectives for the application of SMHT in vivo as an innovative safe and physiologically mild strategy against obesity, potentially useful in association with balanced diet and healthy lifestyle.


Assuntos
Adipócitos/metabolismo , Células-Tronco Adultas/metabolismo , Hipertermia Induzida , Lipólise , Nanopartículas de Magnetita/química , Células 3T3 , Células-Tronco Adultas/citologia , Animais , Humanos , Lipase/metabolismo , Nanopartículas de Magnetita/efeitos adversos , Camundongos
13.
J Neurosci ; 35(27): 10088-100, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26157006

RESUMO

Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT: Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune encephalomyelitis (EAE) represents a reliable model of the chronic-progressive variant of MS. fMRI studies in EAE have not been performed extensively up to now. This paper reports fMRI studies in a rat model of MS with somatosensory stimulation of the forepaw. We demonstrated modifications in the recruitment of cortical areas consistent with data from MS patients. To the best of our knowledge, this is the first report of cortical remodeling in a preclinical in vivo model of MS.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/patologia , Encefalomielite Autoimune Experimental/patologia , Imageamento por Ressonância Magnética , Vias Aferentes/fisiologia , Animais , Corpo Caloso/patologia , Citocinas/metabolismo , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Estimulação Elétrica , Membro Posterior/inervação , Processamento de Imagem Assistida por Computador , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Oxigênio/sangue , Ratos
14.
PLoS One ; 9(10): e108959, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25289664

RESUMO

Magnetic nanoparticles (MNPs) are capable of generate heating power under the influence of alternating magnetic fields (AMF); this behaviour recently opened new scenarios for advanced biomedical applications, mainly as new promising tumor therapies. In this paper we have tested magnetic nanoparticles called magnetosomes (MNs): a class of MNPs naturally produced by magnetotactic bacteria. We extracted MNs from Magnetospirillum gryphiswaldense strain MSR-1 and tested the interaction with cellular elements and anti-neoplastic activity both in vitro and in vivo, with the aim of developing new therapeutic approaches for neoplastic diseases. In vitro experiments performed on Human Colon Carcinoma HT-29 cell cultures demonstrated a strong uptake of MNs with no evident signs of cytotoxicity and revealed three phases in the interaction: adherence, transport and accumulation in Golgi vesicles. In vivo studies were performed on subcutaneous tumors in mice; in this model MNs are administered by direct injection in the tumor volume, then a protocol consisting of three exposures to an AMF rated at 187 kHz and 23kA/m is carried out on alternate days, over a week. Tumors were monitored by Magnetic Resonance Imaging (MRI) to obtain information about MNs distribution and possible tissue modifications induced by hyperthermia. Histological analysis showed fibrous and necrotic areas close to MNs injection sites in mice subjected to a complete thermotherapy protocol. These results, although concerning a specific tumor model, could be useful to further investigate the feasibility and efficacy of protocols based on MFH. Magnetic nanoparticles naturally produced and extracted from bacteria seem to be promising candidates for theranostic applications in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Nanopartículas de Magnetita/administração & dosagem , Magnetospirillum , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/tratamento farmacológico , Modelos Animais de Doenças , Sinergismo Farmacológico , Células HT29 , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Magnetossomos/química , Magnetossomos/metabolismo , Masculino , Camundongos , Termodinâmica
15.
J Med Chem ; 57(13): 5686-92, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24901375

RESUMO

New long-circulating maghemite nanoparticles of 4 and 6 nm, coated with an apoferritin protein capsid, exhibit useful properties to act as magnetic resonance imaging (MRI) contrast agents. A full in vivo study of the so-called apomaghemites reveals that their long-term MRI properties are better than those of a standard superparamagnetic iron oxide (SPIO) widely used in biomedical applications. The biodistribution of apomaghemites and standard SPIO was investigated by MRI in mice at two different concentrations, 6 and 2.5 mg of Fe·kg(-1), over 60 days. Significant differences are found at low dose (2.5 mg of Fe·kg(-1)). Thus, whereas apomaghemites are active for MR bioimaging of liver for 45 days, standard SPIO is not effective beyond 7 days. On the basis of our data, we may concluded that apomaghemites can act as new long-term MRI liver contrast agents, allowing first the diagnosis of a liver pathology and then monitoring after treatment without the need for a second injection.


Assuntos
Apoferritinas , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Nanopartículas , Animais , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
16.
Magn Reson Imaging ; 32(5): 529-34, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24629516

RESUMO

Therapeutic effects of interferon-α (IFN-α) are known to be associated with CNS toxicity in humans, and in particular with depression symptoms. Animal models of IFN-α-induced depression (sickness behaviour) have been developed in rodents using various preparations, dosing schedules or routes of administrations. In this work, Manganese Enhanced MRI (MEMRI) has been applied to investigate an experimental model of sickness behaviour induced by administration of IFN-α in rats. IFN-α (3.10(5) U/kg), or vehicle, was daily administered i.p., for 7days in rats (n=20 IFN-α treated and n=20 controls). After treatment, animals were assigned to behavioural (n=10 treated, n=10 control) or MRI (n=10 treated and n=10 control) studies. Animals assigned to the MRI study received two repeated i.p. injections of MnCl2, before image acquisition. Images were acquired at 4.7T using T1 mapping for determination of Mn concentration in brain. After co-registration of T1 maps to a digital brain atlas, differences between brains of treated and untreated animals were assessed pixel-to-pixel by statistical analysis. Behavioural tests showed alterations in freezing and struggling parameters, as expected in an experimental model of sickness behaviour. MRI showed a well defined brain region, mainly contained in the visual cortex, in which Mn uptake was significantly lower in treated than in control animals, indicating probably altered functionality. No significant difference was detected in other brain regions. In addition, a statistically significant decrease in the volume of the pituitary gland, paralleled by a slight increase in its Mn content, was detected in treated animals. MEMRI provides both morphological and functional information in the brain of small laboratory animals and can constitute a valuable tool in the investigation of experimental models of psychiatric diseases.


Assuntos
Cloretos , Depressão/fisiopatologia , Modelos Animais de Doenças , Compostos de Manganês , Transtornos Mentais/patologia , Transtornos Mentais/fisiopatologia , Hipófise/patologia , Hipófise/fisiopatologia , Animais , Meios de Contraste , Depressão/induzido quimicamente , Depressão/patologia , Humanos , Interferon-alfa , Masculino , Transtornos Mentais/induzido quimicamente , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Nanoscale ; 4(24): 7682-9, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23117700

RESUMO

A facile method for the synthesis of water dispersible Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) doped upconverting GdF(3) nanoparticles is reported. Strong upconversion emissions are observed in the red (for Er/Yb doped) and near-infrared (for Tm/Yb doped) regions upon laser excitation at 980 nm. The PEG coating ensures a good dispersion of the system in water and reduces the radiationless de-excitation of the excited states of the Er(3+) and Tm(3+) ions by water molecules. The r(2) relaxivity values are quite high with respect to the common T(2)-relaxing agents (22.6 ± 3.4 mM(-1) s(-1) and 15.8 ± 3.4 mM(-1) s(-1) for the Tm/Yb and Er/Yb doped samples, respectively), suggesting that the present NPs can be interesting as T(2) weighted contrast agents for proton MRI purpose. Preliminary experiments conducted in vitro, in stem cell cultures, and in vivo, after subcutaneous injection of the lanthanide-doped GdF(3) NPs, indicate scarce toxic effects. After an intravenous injection in mice, the GdF(3) NPs localize mainly in the liver. The present results indicate that the present Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) doped GdF(3) NPs are suitable candidates to be efficiently used as bimodal probes for both in vitro and in vivo optical and magnetic resonance imaging.


Assuntos
Meios de Contraste/química , Gadolínio/química , Elementos da Série dos Lantanídeos/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Animais , Colo/diagnóstico por imagem , Európio/química , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Radiografia , Água/química , Ítrio/química
18.
Eur J Radiol ; 81(4): 658-62, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21300505

RESUMO

PURPOSE: To investigate the additional role of MRI contrast enhancement (CE) in the primary tumor and the FDG uptake at PET in the lymph-node metastases. MATERIALS AND METHODS: A model of colorectal cancer induced by orthotopic HT-29 cells microinjection, producing pelvic lymph node metastases, was assessed using CE-MRI and FDG-PET. Histology and GLUT-1 immunohistochemistry were performed on primary tumors and iliac lymph nodes. RESULTS: Primary tumors were characterized by low FDG-uptake but high CE-MRI, particularly at tumor periphery. Undetectable FDG-uptake characterized the metastatic lymph-nodes. Histology revealed large stromal bundles at tumor periphery and a dense network of stromal fibers and neoplastic cells in the inner portion of the tumors. Both primary tumors and positive lymph nodes showed poor GLUT-1 staining. CONCLUSION: Our data support the complementary role of MRI-CE and FDG PET in some types of carcinomas characterized by abundant cancer-associated stroma and poor FDG avidity consequent to poor GLUT-1 transported. In these tumors FDG-PET alone may be not completely adequate to obtain an adequate tumor radiotherapy planning, and a combination with dual CE-MRI is strongly recommended.


Assuntos
Adenocarcinoma/diagnóstico , Adenocarcinoma/secundário , Fluordesoxiglucose F18 , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste , Células HT29 , Humanos , Metástase Linfática , Camundongos , Camundongos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
19.
Neuropsychopharmacology ; 37(3): 822-37, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22048464

RESUMO

Modafinil (MOD) is a wake-promoting drug with pro-cognitive properties. Despite its increasing use, the neuronal substrates of MOD action remain elusive. In particular, animal studies have highlighted a putative role of diencephalic areas as primary neuronal substrate of MOD action, with inconsistent evidence of recruitment of fronto-cortical areas despite the established pro-cognitive effects of the drug. Moreover, most animal studies have employed doses of MOD of limited clinical relevance. We used pharmacological magnetic resonance imaging (phMRI) in the anesthetized rat to map the circuitry activated by a MOD dose producing clinically relevant plasma exposure, as here ascertained by pharmacokinetic measurements. We observed prominent and sustained activation of the prefrontal and cingulate cortex, together with weaker but significant activation of the somatosensory cortex, medial thalamic domains, hippocampus, ventral striatum and dorsal raphe. Correlation analysis of phMRI data highlighted enhanced connectivity within a neural network including dopamine projections from the ventral tegmental area to the nucleus accumbens. The pro-arousing effect of MOD was assessed using electroencephalographic recording under anesthetic conditions comparable to those used for phMRI, together with the corresponding Fos immunoreactivity distribution. MOD produced electroencephalogram desynchronization, resulting in reduced delta and increased theta frequency bands, and a pattern of Fos induction largely consistent with the phMRI study. Altogether, these findings show that clinically relevant MOD doses can robustly activate fronto-cortical areas involved in higher cognitive functions and a network of pro-arousing areas, which provide a plausible substrate for the wake-promoting and pro-cognitive effects of the drug.


Assuntos
Compostos Benzidrílicos/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Lobo Frontal/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Córtex Somatossensorial/efeitos dos fármacos , Animais , Mapeamento Encefálico , Lobo Frontal/metabolismo , Imageamento por Ressonância Magnética , Masculino , Modafinila , Rede Nervosa/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/metabolismo
20.
J Magn Reson Imaging ; 33(3): 550-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21563238

RESUMO

PURPOSE: To compare early versus late enhancement in two glioblastoma models characterized by different infiltrative/edematous patterns. MATERIALS AND METHODS: Three weeks after inoculation into nude mice of U87MG and U251 cells, T1-weighted images were acquired early (10.5 min), intermediate (21 min) and late (30.5 min) after a bolus injection of Gd-DTPA at 300 µ mol/kg dosage. EARLY(TH) and LATE(TH) were the corresponding volumes with an enhancement higher than a threshold TH, defined by the mean (µ) and standard deviation (σ) on a contralateral healthy area. ADD(TH) was the enhancing volume found in LATE(TH) but not in EARLY(TH). T2 imaging of both tumors was performed, and T2 mapping of U251. RESULTS: In all tumors, LATE(TH) was significantly higher than EARLY(TH) for TH ranging from µ+σ to µ+5σ. The ADD(TH) /EARLY(TH) ratio was not significantly different when U251 and U87MG tumors were compared. In the U87MG tumors, some enhancement was observed outside the regularly demarcated T2-hyperintense area. In the U251 tumors, irregularly T2 demarcated, a large portion of ADD(µ+3σ) had normal T2 values. At histology, U251 showed a higher infiltrative pattern than U87MG. CONCLUSION: In these models, the increase over time in the enhancing volume did not depend on the different infiltrative/edematous patterns and was not closely related with edema.


Assuntos
Neoplasias Encefálicas/patologia , Meios de Contraste/farmacologia , Gadolínio DTPA/farmacologia , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Animais , Neoplasias Encefálicas/diagnóstico , Linhagem Celular Tumoral , Edema , Glioblastoma/diagnóstico , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias Experimentais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA