Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 7: e7841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660266

RESUMO

This study develops a modelling framework by utilizing multi-sensor imagery for classifying different forest and land use types in the Phnom Kulen National Park (PKNP) in Cambodia. Three remote sensing datasets (Landsat optical data, ALOS L-band data and LiDAR derived Canopy Height Model (CHM)) were used in conjunction with three different machine learning (ML) regression techniques (Support Vector Machines (SVM), Random Forests (RF) and Artificial Neural Networks (ANN)). These ML methods were implemented on (a) Landsat spectral data, (b) Landsat spectral band & ALOS backscatter data, and (c) Landsat spectral band, ALOS backscatter data, & LiDAR CHM data. The Landsat-ALOS combination produced more accurate classification results (95% overall accuracy with SVM) compared to Landsat-only bands for all ML models. Inclusion of LiDAR CHM (which is a proxy for vertical canopy heights) improved the overall accuracy to 98%. The research establishes that majority of PKNP is dominated by cashew plantations and the nearly intact forests are concentrated in the more inaccessible parts of the park. The findings demonstrate how different RS datasets can be used in conjunction with different ML models to map forests that had undergone varying levels of degradation and plantations.

2.
Ecol Evol ; 8(20): 10175-10191, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30397457

RESUMO

Community forests are known to play an important role in preserving forests in Cambodia, a country that has seen rapid deforestation in recent decades. The detailed evaluation of the ability of community-protected forests to retain forest cover and prevent degradation in Cambodia will help to guide future conservation management. In this study, a combination of remotely sensing data was used to compare the temporal variation in forest structure for six different community forests located in the Phnom Kulen National Park (PKNP) in Cambodia and to assess how these dynamics vary between community-protected forests and a wider study area. Medium-resolution Landsat, ALOS PALSAR data, and high-resolution LiDAR data were used to study the spatial distribution of forest degradation patterns and their impacts on above-ground biomass (AGB) changes. Analysis of the remotely sensing data acquired at different spatial resolutions revealed that between 2012 and 2015, the community forests had higher forest cover persistence and lower rates of forest cover loss compared to the entire study area. Furthermore, they faced lower encroachment from cashew plantations compared to the wider landscape. Four of the six community forests showed a recovery in canopy gap fractions and subsequently, an increase in the AGB stock. The levels of degradation decreased in forests that had an increase in AGB values. However, all community forests experienced an increase in understory damage as a result of selective tree removal, and the community forests with the sharpest increase in understory damage experienced AGB losses. This is the first time multitemporal high-resolution LiDAR data have been used to analyze the impact of human-induced forest degradation on forest structure and AGB. The findings of this work indicate that while community-protected forests can improve conservation outcomes to some extent, more interventions are needed to curb the illegal selective logging of valuable timber trees.

3.
PLoS One ; 11(4): e0154548, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27116352

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0121558.].

4.
PLoS One ; 10(4): e0121558, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25902148

RESUMO

At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.


Assuntos
Florestas , Tecnologia de Sensoriamento Remoto/métodos , Árvores/classificação , Camboja , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Monitoramento Ambiental , Nações Unidas
5.
Proc Natl Acad Sci U S A ; 110(31): 12595-600, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23847206

RESUMO

Previous archaeological mapping work on the successive medieval capitals of the Khmer Empire located at Angkor, in northwest Cambodia (∼9th to 15th centuries in the Common Era, C.E.), has identified it as the largest settlement complex of the preindustrial world, and yet crucial areas have remained unmapped, in particular the ceremonial centers and their surroundings, where dense forest obscures the traces of the civilization that typically remain in evidence in surface topography. Here we describe the use of airborne laser scanning (lidar) technology to create high-precision digital elevation models of the ground surface beneath the vegetation cover. We identify an entire, previously undocumented, formally planned urban landscape into which the major temples such as Angkor Wat were integrated. Beyond these newly identified urban landscapes, the lidar data reveal anthropogenic changes to the landscape on a vast scale and lend further weight to an emerging consensus that infrastructural complexity, unsustainable modes of subsistence, and climate variation were crucial factors in the decline of the classical Khmer civilization.


Assuntos
Arqueologia/instrumentação , Arqueologia/métodos , Civilização/história , Reforma Urbana/história , Camboja , História do Século XV , História Medieval , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA