Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
FEBS Open Bio ; 14(7): 1057-1071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750619

RESUMO

There has been renewed interest in using mitochondrial uncoupler compounds such as niclosamide and carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) for the treatment of obesity, hepatosteatosis and diseases where oxidative stress plays a role. However, both FCCP and niclosamide have undesirable effects that are not due to mitochondrial uncoupling, such as inhibition of mitochondrial oxygen consumption by FCCP and induction of DNA damage by niclosamide. Through structure-activity analysis, we identified FCCP analogues that do not inhibit mitochondrial oxygen consumption but still provided good, although less potent, uncoupling activity. We also characterized the functional role of the niclosamide 4'-nitro group, the phenolic hydroxy group and the anilide amino group in mediating uncoupling activity. Our structural investigations provide important information that will aid further drug development.


Assuntos
Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Mitocôndrias , Niclosamida , Desacopladores , Niclosamida/farmacologia , Niclosamida/química , Desacopladores/farmacologia , Desacopladores/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/química , Humanos , Relação Estrutura-Atividade , Consumo de Oxigênio/efeitos dos fármacos , Animais
2.
Sci Rep ; 14(1): 4932, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418847

RESUMO

One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Metabolismo Energético , Tecido Adiposo Branco/metabolismo , Éteres , Fenóis/farmacologia , Proteína Desacopladora 1/metabolismo
3.
Chem Sci ; 14(45): 13184-13190, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023527

RESUMO

Enantioselective ion pair catalysis has gained significant attention due to its ability to exert selectivity control in various reactions. Achiral counterions have been found to play crucial roles in modulating reactivity and selectivity. The modular nature of an ion pair catalyst allows rapid alterations of the achiral counterion to achieve optimal outcomes, without the need to modify the more onerous chiral component. In this study, we report the successful development of a stable chiral pentanidium pyridinyl-sulphonamide ion pair as a nucleophilic organocatalyst for asymmetric Steglich rearrangement. The ion pair catalyst demonstrated excellent performance, leading to enantioenriched products with up to 99% ee through simple alterations of the achiral anions. We conducted extensive ROESY experiments and concluded that the reactivity and enantioselectivity were correlated to the formation of a tight ion pair in solution. Further computational analyses provided greater clarity to the structure of the ion pair catalyst in solution. Our findings reveal the critical roles of NMR experiments and computational analyses in the design and optimisation of ion pair catalysts.

4.
ACS Org Inorg Au ; 3(2): 74-91, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37035284

RESUMO

Organometallic catalysis is a powerful strategy in chemical synthesis, especially with the cheap and low toxic metals based on green chemistry principle. Thus, the selection of the metal is particularly important to plan relevant and applicable processes. The group VB metals have been the subject of exciting and significant advances in both organic and inorganic synthesis. In this Review, we have summarized some reports from recent decades, which are about the development of group VB metals utilized in various types of reactions, such as oxidation, reduction, alkylation, dealkylation, polymerization, aromatization, protein synthesis, and practical water splitting.

5.
JACS Au ; 3(3): 700-714, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006767

RESUMO

Sulfur can form diverse S(IV) and S(VI) stereogenic centers, of which some have gained significant attention recently due to their increasing use as pharmacophores in drug discovery programs. The preparation of these sulfur stereogenic centers in their enantiopure form has been challenging, and progress made will be discussed in this Perspective. This Perspective summarizes different strategies, with selected works, for asymmetric synthesis of these moieties, including diastereoselective transformations using chiral auxiliaries, enantiospecific transformations of enantiopure sulfur compounds, and catalytic enantioselective synthesis. We will discuss the advantages and limitations of these strategies and will provide our views on how this field will develop.

6.
Phys Chem Chem Phys ; 25(15): 10599-10603, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36994919

RESUMO

Methylation is one of the crucial steps for drug discovery, organic synthesis, and catalysis. Despite being a versatile and well-known chemical reaction, its chemoselectivity has not been well addressed. In this paper, we reported a thorough experimental and computational investigation of the selective N-methylation of N-heterocyclic compounds, mainly quinolines and pyridines. These reactions were conducted in a base-free manner under ambient conditions using iodomethane as the methylating reagent, exhibited good chemoselectivity, and were tolerant of other amine, carboxyl, or hydroxyl functional groups without needing protection. To this end, 13 compounds were synthesized as a proof-of-concept and 7 crystal structures were obtained. However, the chemoselectivity failed in the presence of a thiol group. Detailed quantum chemical calculations provided insights into the N-methylation mechanism and its selectivity and demonstrated that the isomerization induced by ground-state intramolecular proton transfer (GSIPT) in the presence of a thiol group inhibits the N-methylation.

7.
Chem Rec ; 23(7): e202200304, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36762723

RESUMO

In this account, we further describe our already developed N-sp2 hybrid guanidinium as an efficient phase-transfer catalyst and ion pair catalysis based on N-sp2 hybrid pentanidinium and its application in some new reactions. The sp3 hybrid quaternary ammonium salt has a tetrahedral structure, which means that three sides of it can be effectively steric, allowing the remaining side to be close to the substrate. However, the sp2 hybrid ammonium salt allows the substrate to form ion pairs from both directions respectively, so it is a greater challenge to control the stereoselectivity of the reaction. Van der Waals forces, such as hydrogen bonds and π - π ${\pi -\pi }$ interactions, have been used to make electrophiles approach from a certain direction, leading to a higher enantioselectivity. Based on the above idea, we designed an N-sp2 hybrid phase-transfer catalyst, pentanidinium. Pentanidinium has five conjugated nitrogen atoms, one of which has a formal positive charge, which is necessary for it to become an ion pair catalyst. We have confirmed that pentanidinium can catalyze α-hydroxylation of 3-substituted-2-oxindoles, Michael addition of 3-alkyloxindoles with vinyl sulfone, and alkylation reactions of sulfenate anions and dihydrocoumarins, desymmetrization of pro-chiral sulfinate to afford enantioenriched sulfinate esters. Pentanidinium with side chain structure changes can also be catalyzed efficiently with enantioconvergent halogenophilic nucleophilic substitution, including azidation and thioesterification. In the reaction catalyzed by pentanidinium, it always attracts us with the advantages of low catalytic load and good enantioselectivity.


Assuntos
Compostos de Amônio , Ésteres , Estereoisomerismo , Catálise , Alquilação , Ésteres/química
8.
J Org Chem ; 88(2): 1245-1255, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36628963

RESUMO

A novel organobase-catalyzed umpolung reaction of amides was disclosed. This method provides an efficient method to generate and transfer carbamoyl anions. In this transformation, some of the inherent disadvantages of carbamoyl metal were avoided. The mechanistic analysis revealed that the reaction proceeds through polarity inversion of amide, and various carbamoyl anions were applied in the reaction. Moreover, a wide range of substrates was achieved with moderate to excellent yield.


Assuntos
Amidas , Estrutura Molecular , Ânions , Catálise
9.
J Org Chem ; 88(12): 7660-7673, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36702628

RESUMO

Spiro[indoline-3,4'-piperidine] is a fundamental motif present in various biologically active compounds. Here, we report an intramolecular oxidative coupling reaction of oxindoles with ß-dicarbonyls in the presence of a guanidinium hypoiodite catalyst, providing spiro-coupling products in moderate to excellent yields. Furthermore, a chiral hypoiodite catalyst derived from the chiral guanidinium organocatalyst is effective for the challenging asymmetric carbon-carbon bond-forming reaction, affording optically active spiro[indoline-3,4'-piperidines].


Assuntos
Compostos de Espiro , Estrutura Molecular , Acoplamento Oxidativo , Oxindóis , Guanidina , Estereoisomerismo , Catálise
10.
F1000Res ; 11: 111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811794

RESUMO

BACKGROUND: eHealth makes use of information and communication technologies (ICT) to improve health. In the digital age, the use of eHealth applications and other health-related applications has gained popularity, particularly during the COVID-19 pandemic. As a result of the pandemic, many uncertainties have arisen, causing stress and affecting the mental health of many skilled workers in the digital industry, particularly in the ICT, computing, and creative media industries. eHealth applications have the potential to benefit people's health. As a prerequisite for effective implementation of eHealth for mental wellness (EHMW), this paper examines the acceptance of EHMW among digital workers in Malaysia.  The objectives of this research are two-fold: 1) To explore the acceptance of EHMW among digital workers in a local Premier Digital Tech Institution (PDTI), and 2) To explore how these talents' demographic profiles, mental health literacy and workplace wellness influence their acceptance of EHMW.   Methods: This research surveyed 41 digital workers who played vital roles in providing digital skills at a tertiary education level.    Results: Most respondents agreed that eHealth was appropriate for managing mental wellness. Among the three eHealth domains for managing mental wellness, the acceptance level is the highest for the application domain of "interacting for health", with male respondents more likely to accept the use of EHMW.  Conclusions: This small-scale survey could not fully examine the acceptance of eHealth and its usage patterns for mental wellness among digital workers in Malaysia. Future research will target more digital workers in Malaysia. This research addresses the research gap on the eHealth perspectives of digital workers on their acceptance, and the potential influence of demographic profiles, mental health literacy, and workplace wellness on EHMW's acceptance of digital health tools/platforms to promote their mental wellness.


Assuntos
COVID-19 , Letramento em Saúde , Telemedicina , Humanos , Masculino , Saúde Mental , Pandemias
11.
J Org Chem ; 87(6): 4029-4039, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35245425

RESUMO

Density functional theory (DFT) is used in this work to predict the mechanism for constructing congested quaternary-quaternary carbon(sp3)-carbon(sp3) bonds in a pentanidium-catalyzed substitution reaction. Computational mechanistic studies were carried out to investigate the proposed SN2X manifold, which consists of two primary elementary steps: halogen atom transfer (XAT) and subsequent SN2. For the first calculated model on original experimental substrates, XAT reaction barriers were more kinetically competitive than an SN2 pathway and connect to thermodynamically stable intermediates. Extensive computational screening modeling was then done on various substrate combinations designed to study the steric influence and to understand the mechanistic rationale, and calculations reveal that sterically congested substrates prefer the SN2X manifold over SN2. Different halides as leaving groups were also screened, and it was found that the reactivity increases in the order of I > Br > Cl > F, in agreement with the strength of C-X bonds. However, DFT modeling suggests that chlorides can be a viable substrate for the SN2X process, which should be further explored experimentally. ONIOM calculations on the full catalyst model predicted the correct stereochemical outcome, and further catalyst screening with cationic Me4N+ and K+ predicted that pentanidium is still the choice for SN2X C-C bond formation.

12.
Angew Chem Int Ed Engl ; 61(14): e202200546, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35107202

RESUMO

Although doping can induce room-temperature phosphorescence (RTP) in heavy-atom free organic systems, it is often challenging to match the host and guest components to achieve efficient intersystem crossing for activating RTP. In this work, we developed a simple descriptor ΔE to predict host molecules for matching the guest RTP emitters, based on the intersystem crossing via higher excited states (ISCHES) mechanism. This descriptor successfully predicted five commercially available host components to pair with naphthalimide (NA) and naphtho[2,3-c]furan-1,3-dione (2,3-NA) emitters with a high accuracy of 83 %. The yielded pairs exhibited bright yellow and green RTP with the quantum efficiency up to 0.4 and lifetime up to 1.67 s, respectively. Using these RTP pairs, we successfully achieved multi-layer message encryption. The ΔE descriptor could provide an efficient way for developing doping-induced RTP materials.

13.
Nature ; 604(7905): 298-303, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35158370

RESUMO

Achiral sulfur functional groups, such as sulfonamide, sulfone, thiol and thioether, are common in drugs and natural products. By contrast, chiral sulfur functional groups are often neglected as pharmacophores1-3, although sulfoximine, with its unique physicochemical and pharmacokinetic properties4,5, has been recently incorporated into several clinical candidates. Thus, other sulfur stereogenic centres, such as sulfinate ester, sulfinamide, sulfonimidate ester and sulfonimidamide, have started to attract attention. The diversity and complexity of these sulfur stereogenic centres have the potential to expand the chemical space for drug discovery6-10. However, the installation of these structures enantioselectively into drug molecules is highly challenging. Here we report straightforward access to enantioenriched sulfinate esters via asymmetric condensation of prochiral sulfinates and alcohols using pentanidium as an organocatalyst. We successfully coupled a wide range of sulfinates and bioactive alcohols stereoselectively. The initial sulfinates can be prepared from existing sulfone and sulfonamide drugs, and the resulting sulfinate esters are versatile for transformations to diverse chiral sulfur pharmacophores. Through late-stage diversification11,12 of celecoxib and other drug derivatives, we demonstrate the viability of this unified approach towards sulfur stereogenic centres.

14.
J Phys Chem A ; 125(38): 8397-8403, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34546046

RESUMO

Understanding the mechanisms of aggregation-induced emission (AIE) is essential for the rational design and deployment of AIEgens toward various applications. Such a deep mechanistic understanding demands a thorough investigation of the excited-state behaviors of AIEgens. However, because of considerable complexity and rapid decay, these behaviors are often not experimentally accessible and the mechanistic comprehension of many AIEgens is lacking. Herein, utilizing detailed quantum chemical calculations, we provide insights toward the AIE mechanism of 1-(N,N-dialkylamino)-naphthalene (DAN) derivatives. Our theoretical analysis, corroborated by experimental observations, leads to the discovery that modulating the formation of the twisted intramolecular charge transfer (TICT) state (caused by the rotation of the amino groups) and managing the steric hindrance to minimize solid-state intermolecular interactions provides a plausible explanation for the AIE characteristics of DAN derivatives. These results will inspire the deployment of the TICT mechanism as a useful design strategy toward AIEgen development.

15.
Org Biomol Chem ; 19(32): 7051-7060, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341809

RESUMO

Preorganization is a common strategy to align halogen bond (XB) donors to form two or more halogen bonds simultaneously. Previous approaches have utilized various non-covalent interactions such as steric interactions, ππ stacking, and hydrogen bond interactions. However, some of the introduced aligning interactions may compete with halogen bond interactions if the donors are employed in catalysis. To achieve thiourea-like properties, we have designed in silico several neutral bidentate halogen bond donors in whose structures the donor moieties are connected via covalent bonds. Compared to previous XB catalyst designs, the new design does not involve other potentially competitive non-covalent interactions such as hydrogen bonds. One of the designed XB donors can deliver strong halogen bonds, with a O-I distance as short as 2.64 Å. Density functional theory (DFT) calculations predicted that our designed catalysts may catalyze important organic reactions on their own, particularly for those reactions that involve (developing) soft anions such as thiolates.

16.
Chem Asian J ; 16(19): 2753-2772, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34286908

RESUMO

Oxidation represents one of the most important and practical chemical transformations for both organic synthesis, material science and pharmaceutical area. Among the existing strategies, molybdenum/tungsten-based heteropoly salts involved oxidations with low-cost and environmentally benign terminal oxidant and thus have attracted considerable attention in recent years. In this review, we have summarized the recent development of heteropoly salts utilized in oxidations, mainly the peroxomolybdates and peroxotungstates. We wish to highlight the progress made in the past 20 years of this field. Three categories are classified according to the aggregation state of metal oxides. Special attention is paid to the catalytically active peroxometalate species generated during the oxidation process. It is helpful to shed light on the common features that enable highly efficient and selective oxidations. We aim to inspire fellow chemists to explore more functional metalates for catalytic oxidations, especially asymmetric versions. Meanwhile, we attempt to understand the design principles for the discovery of more efficient, selective and economical catalytic systems.

17.
J Am Chem Soc ; 143(10): 4024-4031, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33651606

RESUMO

A novel enantioselective protonation protocol that is triggered by reductive cross coupling of olefins is reported. When under cooperative photoredox and chiral hydrogen-bonding catalytic conditions and using a terminal reductant, various α-branched vinylketones with diverse vinylazaarenes could provide important enantioenriched azaarene derivatives containing tertiary stereocenters at their remote δ-position with high yields and enantioselectivities. This reaction system is also suitable for α-branched vinylazaarenes, thus successfully assembling elusive 1,4-stereocenters. The convenient late-stage modifications of products, especially the formation of remote ε-tertiary and ε-heteroquaternary carbon stereocenters, further highlight the important synthetic value of this method. Control experiments and density functional theory (DFT) calculations were conducted to elucidate the plausible reaction mechanism and origins of regioselectivity and stereoselectivity.

18.
J Am Chem Soc ; 142(45): 19065-19070, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33119296

RESUMO

Silicon hydrides, alkynylsilanes, and alkoxylsilanes were activated by fluoride in the presence of bisguanidinium catalyst to form hypervalent silicate ion pairs. These activated silicates undergo 1,4-additions with chromones, coumarins, and α-cyanocinnamic esters generating enolsilicate intermediates, for a consequent stereoselective alkylation reaction. The reduction-alkylation reaction proceeded under mild conditions using polymethylhydrosiloxane, a cheap and environmentally friendly hydride source. The addition-alkylation reactions with alkynylsilanes and alkoxylsilanes resulted in the construction of two vicinal chiral carbon centers with excellent enantioselectivities and diastereoselectivities (up to 99% ee, >99:1 dr). Density functional theory calculations and experimental NMR studies revealed that penta-coordinated silicates are crucial intermediates.

19.
Angew Chem Int Ed Engl ; 59(45): 19728-19731, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32812317

RESUMO

This year Singapore National Institute of Chemistry (SNIC) is celebrating its golden jubilee (1970-2020). Wiley-VCH has been a steadfast partner accompanying the rapid rise of chemistry research in Singapore. In celebration of this golden jubilee, we highlight 50 significant papers published in Angewandte Chemie by scholars currently based in Singapore, covering the widest possible spectrum of chemistry research.

20.
Angew Chem Int Ed Engl ; 59(23): 9055-9058, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32125069

RESUMO

We have developed a method to afford enantiomerically enriched tertiary azides and bromides through pentanidium-catalyzed kinetic resolution (KR) of racemic tertiary bromides under base-free conditions. We found that the absence of water is crucial to attain a high selectivity factor (s). On the other hand, new experimental observations and DFT modeling led us to propose that enantioconvergent azidation of tertiary bromides proceeded through dynamic kinetic resolution (DKR). The investigations particularly identified the crucial roles of base and water in the enantioconvergent process, thus supporting the proposal that the tertiary bromide isomerizes in the presence of base and water through a SN 2X pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA