Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Dermatol ; 31(11): 1748-1760, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320153

RESUMO

Inflammaging is a theory of ageing which purports that low-level chronic inflammation leads to cellular dysfunction and premature ageing of surrounding tissue. Skin is susceptible to inflammaging because it is the first line of defence from the environment, particularly solar radiation. To better understand the impact of ageing and photoexposure on epidermal biology, we performed a system biology-based analysis of photoexposed face and arm, and photoprotected buttock sites, from women between the ages of 20s to 70s. Biopsies were analysed by histology, transcriptomics, and proteomics and skin surface biomarkers collected from tape strips. We identified morphological changes with age of epidermal thinning, rete ridge pathlength loss and stratum corneum thickening. The SASP biomarkers IL-8 and IL-1RA/IL1-α were consistently elevated in face across age and cis/trans-urocanic acid were elevated in arms and face with age. In older arms, the DNA damage response biomarker 53BP1 showed higher puncti numbers in basal layers and epigenetic ageing were accelerated. Genes associated with differentiation and senescence showed increasing expression in the 30s whereas genes associated with hypoxia and glycolysis increased in the 50's. Proteomics comparing 60's vs 20's confirmed elevated levels of differentiation and glycolytic-related proteins. Representative immunostaining for proteins of differentiation, senescence and oxygen sensing/hypoxia showed similar relationships. This system biology-based analysis provides a body of evidence that young photoexposed skin is undergoing inflammaging. We propose the presence of chronic inflammation in young skin contributes to an imbalance of epidermal homeostasis that leads to a prematurely aged appearance during later life.


Assuntos
Epiderme , Pele , Humanos , Feminino , Idoso , Adulto Jovem , Adulto , Pele/metabolismo , Homeostase , Inflamação/metabolismo , Hipóxia/metabolismo , Senescência Celular
2.
J Invest Dermatol ; 142(6): 1670-1681.e12, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34740582

RESUMO

Nicotinamide (NAM), a NAM adenine dinucleotide precursor, is known for its benefits to skin health. Under standard culture conditions, NAM delays the differentiation and enhances the proliferation of human primary keratinocytes, leading to the maintenance of stem cells. In this study, we investigated the effects of NAM on photoaging in two-dimensional human primary keratinocyte cultures and three-dimensional organotypic epidermal models. In both models, we found that UVB irradiation and hydrogen peroxide induced human primary keratinocyte premature terminal differentiation and senescence. In three-dimensional organotypics, the phenotype was characterized by a thickening of the granular layer expressing filaggrin and loricrin, but thinning of the epidermis overall. NAM limited premature differentiation and ameliorated senescence, as evidenced by the maintenance of lamin B1 levels in both models, with decreased lipofuscin staining and reduced IL-6/IL-8 secretion in three-dimensional models, compared to those in UVB-only controls. In addition, DNA damage observed after irradiation was accompanied by a decline in energy metabolism, whereas both effects were partially prevented by NAM. Our data thus highlight the protective effects of NAM against photoaging and oxidative stress in the human epidermis and pinpoint DNA repair and energy metabolism as crucial underlying mechanisms.


Assuntos
Envelhecimento da Pele , Humanos , Queratinócitos/metabolismo , Niacinamida/farmacologia , Estresse Oxidativo , Raios Ultravioleta/efeitos adversos
3.
J Invest Dermatol ; 141(9): 2178-2188.e6, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33984347

RESUMO

Maintaining tissue homeostasis depends on a balance between cell proliferation, differentiation, and apoptosis. Within the epidermis, the levels of the polyamines putrescine, spermidine, and spermine are altered in many different skin conditions, yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, Adenosylmethionine decarboxylase 1 (AMD1), as a crucial regulator of keratinocyte (KC) differentiation. AMD1 protein is upregulated on differentiation and is highly expressed in the suprabasal layers of the human epidermis. During KC differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown or inhibition of AMD1 results in reduced spermine levels and inhibition of KC differentiation. Supplementing AMD1-knockdown KCs with exogenous spermidine or spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signaling proteins that drive KC differentiation, including KLF4 and ZNF750. These findings show that human KCs use controlled changes in polyamine levels to modulate gene expression to drive cellular behavior changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or can be used in the treatment of hyperproliferative skin disorders.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Células Epidérmicas/metabolismo , Espermina/metabolismo , Adenosilmetionina Descarboxilase/genética , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células Epidérmicas/patologia , Técnicas de Silenciamento de Genes , Humanos , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos , Poliaminas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
4.
J Invest Dermatol ; 139(8): 1638-1647.e3, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30776433

RESUMO

Nicotinamide (NAM) is the main precursor of nicotinamide adenine dinucleotide (NAD+), a coenzyme essential for DNA repair, glycolysis, and oxidative phosphorylation. NAM has anti-aging activity on human skin, but the underlying mechanisms of action are unclear. Using 3-dimensional organotypic skin models, we show that NAM inhibits differentiation of the upper epidermal layers and maintains proliferation in the basal layer. In 2-dimensional culture, NAM reduces the expression of early and late epidermal differentiation markers and increases the proliferative capacity of human primary keratinocytes. This effect is characterized by elevated clonogenicity and an increased proportion of human primary keratinocyte stem cell (holoclones) compared to controls. By contrast, preventing the conversion of NAM to NAD+ using FK866 leads to premature human primary keratinocyte differentiation and senescence, together with a dramatic drop in glycolysis and cellular adenosine triphosphate levels while oxidative phosphorylation is moderately affected. All these effects are rescued by addition of NAM, known to compete with FK866, which suggests that conversion to NAD+ is part of the mechanistic response. These data provide insights into the control of differentiation, proliferation, and senescence by NAM and NAD+ in skin. They may lead to new therapeutic advances for skin conditions characterized by dysregulated epidermal homeostasis and premature skin aging, such as photoaging.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Queratinócitos/metabolismo , Niacinamida/farmacologia , Envelhecimento da Pele/fisiologia , Células 3T3 , Acrilamidas , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Piperidinas , Cultura Primária de Células/métodos , Pele/citologia , Pele/metabolismo , Envelhecimento da Pele/efeitos da radiação , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
5.
Int J Cardiol ; 168(2): 1174-85, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23219315

RESUMO

BACKGROUND: Pathological deposition of extracellular matrix in the non-infarct zone (NIZ) of the ventricle post myocardial infarction (MI) is a key contributor to cardiac remodeling and heart failure. FT011, a novel antifibrotic compound, was evaluated for its efficacy in neonatal cardiac fibroblasts (NCF) and in an experimental MI model. METHODS AND RESULTS: Collagen synthesis in NCF was determined by (3)H-proline incorporation following stimulation with TGF-ß or angiotensin II (Ang II). FT011 inhibited collagen synthesis to both agents in a dose dependent manner. In vivo, Sprague Dawley rats underwent left anterior descending coronary artery ligation or sham surgery and were randomized one week later to receive either FT011 (200mg/kg/day) or vehicle for a further 4 weeks. Echocardiography and cardiac catheterization were performed, and tissues were collected for histological analysis of collagen, myocyte hypertrophy, interstitial macrophage accumulation and Smad2 phosphorylation. mRNA expression of collagens I and III and TGF-ß was measured using in situ hybridization and RT-PCR, respectively. FT011 treatment was associated with improved cardiac function (increased ejection fraction, fraction shortening and preload recruitable stroke work) and myocardial remodeling (reduced left ventricular diameter and volume at both end diastolic and systolic) compared with vehicle treatment. FT011 significantly reduced collagen matrix deposition, myocyte hypertrophy and interstitial macrophage infiltration, and mRNA expression of collagens I and III in NIZ compared with vehicle treatment. CONCLUSION: Anti-fibrotic therapy with FT011 in MI rats attenuated fibrosis and preserved systolic function.


Assuntos
Antifibrinolíticos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Ácidos Cafeicos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , ortoaminobenzoatos/uso terapêutico , Animais , Animais Recém-Nascidos , Antifibrinolíticos/farmacologia , Pressão Sanguínea/fisiologia , Ácidos Cafeicos/farmacologia , Colágeno/antagonistas & inibidores , Colágeno/biossíntese , Masculino , Infarto do Miocárdio/patologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Remodelação Ventricular/fisiologia , ortoaminobenzoatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA