RESUMO
BACKGROUND: Edaravone (EDR) is known for its free radical scavenging, antiapoptotic, antinecrotic, and anticytokine effects in neurological and non-neurological diseases. It is currently available clinically as Radicava® and Radicut®, intravenous medications, recently approved for the treatment of amyotrophic lateral sclerosis and cerebral infarction. However, the oral use of EDR is still restricted by its poor oral bioavailability (BA) due to poor aqueous solubility, stability, rapid metabolism, and low permeability. The present study reports the development of novel EDR formulation (NEF) using self-nanomicellizing solid dispersion (SNMSD) strategy with the aim to enable its oral use. MATERIALS AND METHODS: The selection of a suitable carrier for the development of NEF was performed based on the miscibility study. The optimization of EDR-to-carrier ratio was conducted via kinetic solubility study after preparing SNMSDs using solvent evaporation technique. The drug-polymer carrier interaction and self-nanomicellizing properties of NEF were investigated with advanced characterization studies. In vitro permeation, metabolism, and dissolution study was carried out to examine the effect of the presence of a carrier on physico-chemical properties of EDR. Additionally, the dose-dependent pharmacokinetic study of NEF was conducted and compared with the EDR suspension. RESULTS: Soluplus® (SOL) as a carrier was selected based on the potential for improving aqueous solubility. The NEF containing EDR and SOL (1:5) resulted in the highest enhancement in aqueous solubility (17.53-fold) due to amorphization, hydrogen bonding interaction, and micellization. Moreover, the NEF demonstrated significant improvement in metabolism, permeability, and dissolution profile of EDR. Furthermore, the oral BA of NEF showed 10.2-, 16.1-, and 14.8-fold enhancement compared to EDR suspension at 46, 138, and 414 µmol/kg doses. CONCLUSION: The results demonstrated that SNMSD strategy could serve as a promising way to enhance EDR oral BA and NEF could be a potential candidate for the treatment of diseases in which oxidative stress plays a key role in their pathogenesis.
Assuntos
Edaravone/farmacocinética , Sequestradores de Radicais Livres/farmacocinética , Administração Oral , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Composição de Medicamentos , Edaravone/administração & dosagem , Edaravone/química , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/química , Humanos , Cinética , Polímeros/química , SolubilidadeRESUMO
Edaravone (EDR) is a well-recognized lipophilic free radical scavenger for diseases including neurodegenerative disease, cardiovascular disease, and cancer. However, its oral use is restricted due to poor oral bioavailability (BA). The aim of present research was to enable its oral use by developing a lipid-based nanosystem (LNS). The components of LNS including oil, surfactants, and co-surfactants were selected based on their potential to maximize the solubilization in gastrointestinal (GI) fluids, reduce its glucuronidation and improve transmembrane permeability. The liquid LNS (L-LNS) with Capryol™ PGMC (Oil), Cremophor® RH 40:Labrasol®:TPGS 1000 (1:0.8:0.2) (Surfactant) and Transcutol P® (Co-surfactant) were optimized to form microemulsion having droplet size (16.25 nm), polydispersity index (0.039), % Transmittance (99.85%), and self-emulsification time (32 s). It significantly improved the EDR loading as well as its metabolism and permeability profile during transport across the GI tract. To overcome the possible drawbacks of L-LNS, Aerosil® 200 was used to formulate solid LNS (S-LNS), and its concentration was optimized based on flow properties. S-LNS possessed all quality attributes of L-LNS confirmed by solid-state characterization, reconstitution ability, and stability study. The dissolution rate of EDR was significantly enhanced with L-LNS and S-LNS in simulated gastric, and intestinal fluids. The pharmacokinetic study revealed significant improvement in relative BA, Cmax, and t1/2 with L-LNS and S-LNS against EDR suspension. Moreover, S-LNS showed superior cellular uptake and neuroprotective effect compared to EDR in SH-SY5Y695 cell line. An appropriate selection of the components of LNS could enable effective oral delivery of challenging therapeutics that are conventionally used by the parenteral administration.
Assuntos
Nanoestruturas , Administração Oral , Antipirina/análogos & derivados , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Edaravone , Emulsões , Humanos , Lipídeos , SolubilidadeRESUMO
Edaravone (EDR), a strong free radical scavenger, is known for its promising therapeutic potential in oxidative stress (OS) associated diseases, however poor oral bioavailability is the major obstacle in its potential use. Oral liquid dosage form is the most preferred delivery method in paediatric, geriatric and specialised therapies. The present research discusses the development of a Novel Oral Delivery System (NODS) of EDR to enhance oral bioavailability. From preformulation study, solubility, and stability were identified as key challenges and the requirement of an acidic environment and protection against oxidation were found to be critical. The NODS made up of a mixture of Labrasol (LBS) and an acidic aqueous system, was optimized on the basis of solubility and stability study. It can be stored ≤40°C for at least one month. Drug release from NODS was slow, sustained and significantly better as compared to suspension. The significant reduction in metabolism and improvement in permeability across the small intestine were observed with NODS compared to free EDR. The oral pharmacokinetic study showed 571% relative bioavailability with NODS compared to EDR suspension. From the results obtained, NODS is a promising candidate for use in OS associated diseases.