Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Cancer Cell Int ; 23(1): 204, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716943

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) represents a significant clinical challenge. Chemotherapy remains the mainstay for a large part of TNBC patients, whereas drug resistance and tumor recurrence frequently occur. It is in urgent need to identify novel molecular targets for TNBC and develop effective therapy against the aggressive disease. METHODS: Immunohistochemistry was performed to examine the expression of HER3 in TNBC samples. Western blots were used to assess protein expression and activation. Cell proliferation and viability were determined by cell growth (MTS) assays. TCGA databases were analyzed to correlate HER3 mRNA expression with the clinical outcomes of TNBC patients. Specific shRNA was used to knockdown HER3 expression. IncuCyte system was utilized to monitor cell growth and migration. LIVE/DEAD Cell Imaging was to detect live and dead cells. HER3 recognition by our anti-HER3 monoclonal antibody (mAb) 4A7 was verified by ELISA, flow cytometry, and co-immunoprecipitation assays. Orthotopic tumor models were established in nude mice to determine the capability of TNBC cells forming tumors and to test if our mAb 4A7 could potentiate the antitumor activity of paclitaxel in vivo. RESULTS: Elevated expression of HER3 was observed in approximately half of the TNBC specimens and cell lines tested. Analyses of TCGA databases found that the TNBC patients with high HER3 mRNA expression in the tumors showed significantly worse overall survival (OS) and relapse-free survival (RFS) than those with low HER3 expression. Specific knockdown of HER3 markedly inhibited TNBC cell proliferation and mammosphere formation in vitro and tumor growth in vivo. Our mAb 4A7 abrogated heregulin (a ligand for HER3), but not SDF-1 (a ligand for CXCR4)-induced enhancement of TNBC cell migration. Combinations of 4A7 and the EGFR-tyrosine kinase inhibitor (TKI) gefitinib dramatically decreased the levels of phosphorylated HER3, EGFR, Akt, and ERK1/2 in TNBC cells and potently induced growth inhibition and cell death. Moreover, 4A7 in combination with paclitaxel exerted significant antitumor activity against TNBC in vitro and in vivo. CONCLUSIONS: Our data demonstrate that increased HER3 is an effective therapeutic target for TNBC and our anti-HER3 mAb (4A7) may enhance the efficacy of gefitinib or paclitaxel in TNBC.

3.
NPJ Precis Oncol ; 7(1): 72, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537339

RESUMO

Patients with triple-negative breast cancer (TNBC) have a poor prognosis and high relapse rate due to limited therapeutic options. This study was conducted to determine the mechanisms of action of panobinostat, a pan-inhibitor of histone deacetylase (HDAC) and FDA-approved medication for multiple myeloma, in TNBC and to provide a rationale for effective drug combinations against this aggressive disease. RNA sequencing analyses of the claudin-low (CL) TNBC (MDA-MB-231) cells untreated or treated with panobinostat were performed to identify the differentially expressed genes. Adaptive alterations in gene expression were analyzed and validated in additional CL TNBC cells. Tumor xenograft models were used to test the in vivo antitumor activity of panobinostat alone or its combinations with gefitinib, an EGFR-tyrosine kinase inhibitor (TKI). Panobinostat potently inhibited proliferation and induced apoptosis in all TNBC cells tested. However, in CL TNBC cells, this HDAC inhibitor markedly enhanced expression of HER3, which interacted with EGFR to activate both receptors and Akt signaling pathways. Combinations of panobinostat and gefitinib synergistically suppressed CL TNBC cell proliferation and promoted apoptosis in vitro and in vivo. Upregulation of HER3 compromises the efficacy of panobinostat in CL TNBC. Inactivation of HER3 combined with panobinostat represents a practical approach to combat CL TNBC.

4.
Biol Proced Online ; 25(1): 19, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370010

RESUMO

BACKGROUND: Resistance to HER2-targeted therapies, including the monoclonal antibody trastuzumab and tyrosine kinase inhibitor lapatinib, frequently occurs and currently represents a significant clinical challenge in the management of HER2-positive breast cancer. We previously showed that the trastuzumab-resistant SKBR3-pool2 and BT474-HR20 sublines were refractory to lapatinib in vitro as compared to the parental SKBR3 and BT474 cells, respectively. The in vivo efficacy of lapatinib against trastuzumab-resistant breast cancer remained unclear. RESULTS: In tumor xenograft models, both SKBR3-pool2- and BT474-HR20-derived tumors retained their resistance phenotype to trastuzumab; however, those tumors responded differently to the treatment with lapatinib. While lapatinib markedly suppressed growth of SKBR3-pool2-derived tumors, it slightly attenuated BT474-HR20 tumor growth. Immunohistochemistry analyses revealed that lapatinib neither affected the expression of HER3, nor altered the levels of phosphorylated HER3 and FOXO3a in vivo. Interestingly, lapatinib treatment significantly increased the levels of phosphorylated Akt and upregulated the expression of insulin receptor substrate-1 (IRS1) in the tumors-derived from BT474-HR20, but not SKBR3-pool2 cells. CONCLUSIONS: Our data indicated that SKBR3-pool2-derived tumors were highly sensitive to lapatinib treatment, whereas BT474-HR20 tumors exhibited resistance to lapatinib. It seemed that the inefficacy of lapatinib against BT474-HR20 tumors in vivo was attributed to lapatinib-induced upregulation of IRS1 and activation of Akt. Thus, the tumor xenograft models-derived from SKBR3-pool2 and BT474-HR20 cells serve as an excellent in vivo system to test the efficacy of other HER2-targeted therapies and novel agents to overcome trastuzumab resistance against HER2-positive breast cancer.

5.
Int J Biol Macromol ; 223(Pt A): 931-938, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36372107

RESUMO

MicroRNAs (miRNAs), useful biomarkers for cancer diagnosis, play an important role in tumorigenesis and progression, but many of the current analysis methods can suffer from excessive protease dependence, being time-consuming and unsatisfactory performance. Therefore, a reliable sensing strategy for the protein-free, ultrasensitive analysis of tumor-associated miRNAs is desired. The proposed dual-walker biosensing strategy based on an entropy-driven catalytic (EDC) walker coupled with a smart-responsive DNAzyme walker was demonstrated for the dual-amplification detection of miRNA-21. Namely, the target miRNA-21 initiates the three-stranded substrate complex of the traditional EDC circuit to release the input trigger of the Dz walker, which recognizes the circular binding domain to restore the cleavage activity of the DzS-AuNP walker. The fluorescence signal continuously released from the AuNPs was recorded by a fluorescence reader for miRNA-21 sensing. The optimized dual-walker exhibited appreciable sensitivity with a detection limit of 70 fM, satisfactory flexibility, fine specificity and ideal stability for clinical serum sample assays. The proposed strategy may open a new avenue for the development of powerful DNA molecular tools for cancer diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , MicroRNAs , Neoplasias , Humanos , DNA Catalítico/química , MicroRNAs/metabolismo , Ouro , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
6.
Cell Death Differ ; 27(10): 2973-2987, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32424142

RESUMO

The mesenchymal transcription factor forkhead box F2 (FOXF2) is a critical regulator of embryogenesis and tissue homeostasis. Our previous studies demonstrated that FOXF2 is ectopically expressed in basal-like breast cancer (BLBC) cells and that FOXF2 deficiency promotes the epithelial-mesenchymal transition and aggressiveness of BLBC cells. In this study, we found that FOXF2 controls transforming growth factor-beta (TGF-ß)/SMAD signaling pathway activation through transrepression of TGF-ß-coding genes in BLBC cells. FOXF2-deficient BLBC cells adopt a myofibroblast-/cancer-associated fibroblast (CAF)-like phenotype, and tend to metastasize to visceral organs by increasing autocrine TGF-ß signaling and conferring aggressiveness to neighboring cells by increasing paracrine TGF-ß signaling. In turn, TGF-ß silences FOXF2 expression through upregulating miR-182-5p, a posttranscriptional regulator of FOXF2 and inducer of metastasis. In addition to mediating a reciprocal repression loop between FOXF2 and TGF-ß through direct transrepression by SMAD3, miR-182-5p forms a reciprocal repression loop with FOXF2 that directly transrepresses MIR182 expression. Therefore, FOXF2 deficiency accelerates the visceral metastasis of BLBC through unrestricted increases in autocrine and paracrine TGF-ß signaling, and miR-182-5p expression. Our findings provide novel mechanisms underlying the roles of TGF-ß, miR-182-5p, and FOXF2 in accelerating BLBC dissemination and metastasis, and may facilitate the development of therapeutic strategies for aggressive BLBC.


Assuntos
Neoplasias da Mama/metabolismo , Fatores de Transcrição Forkhead/fisiologia , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Camundongos SCID
7.
Nat Commun ; 10(1): 2707, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222004

RESUMO

Bone metastases occur in most advanced breast cancer patients and cause serious skeletal-related complications. The mechanisms by which bone metastasis seeds develop in primary tumors and specifically colonize the bone remain to be elucidated. Here, we show that forkhead box F2 (FOXF2) functions as a master transcription factor for reprogramming cancer cells into an osteomimetic phenotype by pleiotropic transactivation of the BMP4/SMAD1 signaling pathway and bone-related genes that are expressed at early stages of bone differentiation. The epithelial-to-osteomimicry transition regulated by FOXF2 confers a tendency on cancer cells to metastasize to bone which leads to osteolytic bone lesions. The BMP antagonist Noggin significantly inhibits FOXF2-driven osteolytic bone metastasis of breast cancer cells. Thus, targeting the FOXF2-BMP/SMAD axis might be a promising therapeutic strategy to manage bone metastasis. The role of FOXF2 in transactivating bone-related genes implies a biological function of FOXF2 in regulating bone development and remodeling.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Proteína Morfogenética Óssea 4/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/secundário , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Reprogramação Celular/genética , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Osteoblastos , Transdução de Sinais/genética , Proteína Smad1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncotarget ; 7(48): 79688-79705, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27806311

RESUMO

Bone is one of the most common organs of breast cancer metastasis. Cancer cells that mimic osteoblasts by expressing bone matrix proteins and factors have a higher likelihood of metastasizing to bone. However, the molecular mechanisms of osteomimicry formation of cancer cells remain undefined. Herein, we identified a set of bone-related genes (BRGs) that are ectopically co-expressed in primary breast cancer tissues and determined that osteomimetic feature is obtained due to the osteoblast-like transformation of epithelial breast cancer cells that have undergone epithelial-mesenchymal transition (EMT) followed by bone morphogenetic protein-2 (BMP2) stimulation. Furthermore, we demonstrated that breast cancer cells that transformed into osteoblast-like cells with high expression of BRGs showed enhanced chemotaxis, adhesion, proliferation and multidrug resistance in an osteoblast-mimic bone microenvironment in vitro. During these processes, runt-related transcription factor 2 (RUNX2) functioned as a master mediator by suppressing or activating the transcription of BRGs that underlie the dynamic antagonism between the TGF-ß/SMAD and BMP/SMAD signaling pathways in breast cancer cells. Our findings suggest a novel mechanism of osteomimicry formation that arises in primary breast tumors, which may explain the propensity of breast cancer to metastasize to the skeleton and contribute to potential strategies for predicting and targeting breast cancer bone metastasis and multidrug resistance.


Assuntos
Mimetismo Biológico , Proteína Morfogenética Óssea 2/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Osteoblastos/metabolismo , Osteoblastos/patologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica , Microambiente Tumoral , Regulação para Cima
9.
Cancer Lett ; 380(1): 78-86, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27317874

RESUMO

Runt-related transcription factor 2 (RUNX2) is regarded as an important contributor to breast cancer bone metastasis. However, previous studies did not provide direct clinical evidence for a role of RUNX2 in bone-specific metastasis in breast cancer, and the mechanism of RUNX2 in cancer cell recruitment and adhesion to the bone remains unclear. In this study, we showed that RUNX2 expression is positively correlated with the risk of bone-specific metastasis in lymph node-negative breast cancer patients. Then, we identified ITGA5 as a transcriptional target of RUNX2 from multiple candidate genes encoding adhesion molecules or chemokine receptors. We further provided experimental and clinical evidence that RUNX2, in an integrin α5-dependent manner, promotes the attraction and adhesion of breast cancer cells to the bone and confers cancer cell survival and bone colonization advantages. Overall, our findings clarify an adhesion-dependent mechanism of RUNX2 for the osteotropism and bone colonization of breast cancer cells and implicate RUNX2 and integrin α5 as potential molecular markers for the prediction of bone metastasis and therapeutic targets for the treatment of breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Movimento Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Integrina alfa5/metabolismo , Osteoblastos/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa5/genética , Estimativa de Kaplan-Meier , Camundongos , Osteoblastos/patologia , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Transfecção
10.
J Nanosci Nanotechnol ; 15(6): 4604-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369087

RESUMO

The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) grown on sapphire by metalorganic chemical vapor deposition (MOCVD) have been investigated by optical measure- ments of photoluminescence (PL), and structural analysis methods of high-resolution X-ray diffrac- tion (HRXRD) and high-resolution transmission electron microscopy (HRTEM). Two typical samples are studied, both consisting of five periods of GaN barrier width of 11.8 nm with different InGaN well width of 2.95 nm and 1.7 nm. These results indicate that the crystal and optical properties of InGaN/GaN MQWs are improved with the narrower of the InGaN well width. The indium compositions, GaN barrier width and InGaN well width can be achieved by HRXRD simulation software, and the result is consistent with actual growth conditions of InGaN/GaN MQWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA