Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Anat Sci Educ ; 17(6): 1251-1264, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38853404

RESUMO

Dental anatomy education for dental technology students should be developed in alignment with digital dental laboratory practices. We hypothesized that a virtually assisted sketching-based dental anatomy teaching module could improve students' acquisition of skills essential for digital restoration design. The second-year dental technology curriculum included a novel virtual technology-assisted sketching-based module for dental anatomy education. Pre- and post-course assessments evaluated students' skill sets and knowledge bases. Computer-aided design (CAD) scores were analyzed after one year to assess how the skills students developed through this module impacted their subsequent CAD performance. Participants who undertook the dental sketching-based teaching module demonstrated significantly improved theoretical knowledge of dental anatomy, dental aesthetic perception, and spatial reasoning skills. A partial least squares structural equation model indicated that the positive effects of this module on subsequent CAD performance were indirectly mediated by dental aesthetic perception, spatial reasoning, and practice time. A virtually assisted sketching-based dental anatomy teaching module significantly improved students' acquisition of skills and knowledge and positively mediated dental technology students' CAD performance.


Assuntos
Anatomia , Desenho Assistido por Computador , Instrução por Computador , Currículo , Educação em Odontologia , Avaliação Educacional , Humanos , Educação em Odontologia/métodos , Feminino , Anatomia/educação , Masculino , Avaliação Educacional/estatística & dados numéricos , Instrução por Computador/métodos , Estudantes de Odontologia , Aprendizagem , Adulto Jovem , Prótese Dentária , Planejamento de Prótese Dentária , Restauração Dentária Permanente/métodos , Adulto
3.
JMIR Serious Games ; 12: e46789, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38596827

RESUMO

Background: Removable partial denture (RPD) design is crucial to long-term success in dental treatment, but shortcomings in RPD design training and competency acquisition among dental students have persisted for decades. Digital production is increasing in prevalence in stomatology, and a digital RPD (D-RPD) module, under the framework of the certified Objective Manipulative Skill Examination of Dental Technicians (OMEDT) system reported in our previous work, may improve on existing RPD training models for students. Objective: We aimed to determine the efficacy of a virtual 3D simulation-based progressive digital training module for RPD design compared to traditional training. Methods: We developed a prospective cohort study including dental technology students at the Stomatology College of Chongqing Medical University. Cohort 1 received traditional RPD design training (7 wk). Cohort 2 received D-RPD module training based on text and 2D sketches (7 wk). Cohort 3 received D-RPD module pilot training based on text and 2D sketches (4 wk) and continued to receive training based on 3D virtual casts of real patients (3 wk). RPD design tests based on virtual casts were conducted at 1 month and 1 year after training. We collected RPD design scores and the time spent to perform each assessment. Results: We collected the RPD design scores and the time spent to perform each assessment at 1 month and 1 year after training. The study recruited 109 students, including 58 (53.2%) female and 51 male (56.8%) students. Cohort 1 scored the lowest and cohort 3 scored the highest in both tests (cohorts 1-3 at 1 mo: mean score 65.8, SD 21.5; mean score 81.9, SD 6.88; and mean score 85.3, SD 8.55, respectively; P<.001; cohorts 1-3 at 1 y: mean score 60.3, SD 16.7; mean score 75.5, SD 3.90; and mean score 90.9, SD 4.3, respectively; P<.001). The difference between cohorts in the time spent was not statistically significant at 1 month (cohorts 1-3: mean 2407.8, SD 1370.3 s; mean 1835.0, SD 1329.2 s; and mean 1790.3, SD 1195.5 s, respectively; P=.06) but was statistically significant at 1 year (cohorts 1-3: mean 2049.16, SD 1099.0 s; mean 1857.33, SD 587.39 s; and mean 2524.3, SD 566.37 s, respectively; P<.001). Intracohort comparisons indicated that the differences in scores at 1 month and 1 year were not statistically significant for cohort 1 (95% CI -2.1 to 13.0; P=.16), while cohort 3 obtained significantly higher scores 1 year later (95% CI 2.5-8.7; P=.001), and cohort 2 obtained significantly lower scores 1 year later (95% CI -8.8 to -3.9; P<.001). Conclusions: Cohort 3 obtained the highest score at both time points with retention of competency at 1 year, indicating that progressive D-RPD training including virtual 3D simulation facilitated improved competency in RPD design. The adoption of D-RPD training may benefit learning outcomes.

4.
Int J Prosthodont ; 0(0): 1-32, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408132

RESUMO

PURPOSE: To evaluate the surface characteristics, accuracy (trueness and precision), and dimensional stability of tooth preparation dies fabricated using conventional gypsum and direct light processing (DLP), stereolithography (SLA), and polymer jetting printing (PJP) techniques. MATERIALS AND METHODS: Gypsum preparation dies were replicated according to the reference data and imported into DLP, SLA, and PJP printers, and the test data were obtained by scanning after 0, 1, 3, 7, 14, 28, and 42 days. After analyzing the surface characteristics, a best-fit algorithm between the test and the reference data was used to evaluate the accuracy and dimensional stability of the preparation dies. The data were analyzed by one-way analysis of variance and Tukey test or Kruskal-Wallis H test (α = .05). RESULTS: Compared with the gypsum group (3.61 ± 0.59 µm), the root mean square error (RMSE) values of the SLA group (5.33 ± 0.48 µm) was rougher (P < .05), the PJP group (2.43 ± 0.37 µm) was smoother (P < .05), and the DLP group (2.92 ± 0.91 µm) had no significant difference (P > .05). For trueness, the RMSE was greater in the PJP (34.90 ± 4.91 µm) and SLA (19.01 ± 0.95 µm) groups than in the gypsum (16.47 ± 0.47 µm) group (P < .05), and no significant difference was found between the DLP (17.10 Å} 1.77 µm) and gypsum groups. Regarding precision, the RMSE ranking was gypsum = DLP = SLA < PJP group. The RMSE ranges in the gypsum, DLP, PJP, and SLA groups at different times were 6.79 to 8.86 µm, 5.44 to 10.17 µm, 10.16 to 11.28 µm, and 10.94 to 32.74 µm, respectively. CONCLUSION: Although gypsum and printed preparation dies showed statistically significant differences in surface characteristics, accuracy, and dimensional stability, all tooth preparation dies were clinically tolerated and used to produce fixed restorations.

5.
Heliyon ; 10(1): e24095, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226211

RESUMO

Purpose: This study aims to investigate the influence of the build angle on the surface characteristics, accuracy, and dimensional stability of digital light processing (DLP) printed resin bases. Material and methods: Rectangular and complete denture base samples were fabricated at 0, 45, and 90-degree angles (n = 5 for rectangular samples; n = 10 for maxillary and mandibular denture base samples) using a DLP printer. Surface morphology and roughness were assessed using a profilometer, followed by measuring hydrophilicity with a contact angle meter. Accuracy (trueness and precision) and dimensional stability were evaluated at intervals of 1, 3, 7, 14, 28, and 42 days after base printing using best-fit-alignment and deviation analysis in 3D software. Statistical analysis was performed using one-way ANOVA for surface characteristics (α = 0.05), multi-way ANOVA for accuracy and dimensional stability data, and Tukey's test for post-hoc comparisons. Results: The 0-degree group exhibited significantly lower mean roughness (1.27 ± 0.19 µm) and contact angle (80.50 ± 3.71°) (P < 0.001) compared to the 90-degree and 45-degree groups. The 0-degree build angle led to superior trueness (maxilla: 77.80 ± 9.35 µm, mandible: 61.67 ± 10.32 µm) and precision (maxilla: 27.51 ± 7.43 µm, mandible: 53.50 ± 15.16 µm) compared to other groups (P < 0.001). Maxillary base precision was superior to mandibular base precision (P < 0.001). The maxillary base exhibited less dimensional deviation than the mandibular base. The 90-degree group showed the highest deviation compared to the other two groups, and all groups' deviations increased over time (P < 0.001). Conclusions: The build angle significantly influences the surface characteristics, accuracy, and dimensional stability of DLP-printed denture bases. A 0-degree build angle provides the most favorable performance. The maxillary base displayed superior precision and dimensional stability than the mandibular base.

6.
Int J Comput Dent ; 26(4): 319-330, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749283

RESUMO

AIM: The aim of the present study was to evaluate the effect of cement gap and drill offset on the marginal and internal fit discrepancies of crowns designed with different tooth preparations. MATERIALS AND METHODS: Five tooth preparations were constructed, and crowns with different cement gaps and drill offsets were obtained. Then, best-fit alignment was performed on the crowns with the corresponding tooth preparations, and the fit discrepancies were expressed by color-coded difference images and root mean square (RMS) values. The RMS values of each group were analyzed by the rank-based Scheirer-Ray-Hare test (α = 0.05). RESULTS: The color segments in the sharp line angles area of the Sharp line angles group changed significantly before and after the drill offset. The cement gap had a significant effect on the marginal, internal, or overall fit discrepancies of the five design groups (P < 0.001), while the drill offset had a significant effect on the marginal fit discrepancies of the Shoulder-lip group and the internal or overall fit discrepancies of the Sharp line angles group (P < 0.001). Additionally, the interaction effect between cement gap and drill offset was significant for the marginal fit discrepancies of the Shoulder-lip group and the internal or overall fit discrepancies of the Sharp line angles group (P < 0.01). CONCLUSIONS: The cement gap and drill offset had a significant adverse effect on the marginal or internal fit discrepancies of the crowns designed with the shoulder-lip and sharp line angles designs. Tooth preparation designs with intense curvature changes such as shoulder-lip and sharp line angles should be avoided clinically.


Assuntos
Coroas , Cimentos Dentários , Humanos , Cimentos de Ionômeros de Vidro , Preparo do Dente , Preparo Prostodôntico do Dente/métodos , Planejamento de Prótese Dentária , Desenho Assistido por Computador , Adaptação Marginal Dentária , Porcelana Dentária
7.
J Adv Prosthodont ; 13(5): 333-342, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34777722

RESUMO

PURPOSE: To evaluate the impact of five different tooth preparation designs on the marginal and internal fit discrepancies of cobalt-chromium (CoCr) crowns produced by computer-aided designing (CAD) and selective laser melting (SLM) processes. MATERIALS AND METHODS: Five preparation data were constructed, after which design crowns were obtained. Actual crowns were fabricated using an SLM process. After the data of actual crowns were obtained with structural light scanning, intaglio surfaces of the design crown and actual crown were virtually superimposed on the preparation. The fit-discrepancies were displayed with colors, while the root means square was calculated and analyzed with one-way analysis of variance (ANOVA), Tukey's test or Kruskal-Wallis test (α =.05). RESULTS: The marginal or internal color-coded images in the five design groups were not identical. The shoulder-lip and sharp line angle groups in the CAD or SLM process had larger marginal or internal fit discrepancies compared to other groups (P < .05). In the CAD process, the mean marginal and internal fit discrepancies were 10.0 to 24.2 µm and 29.6 to 31.4 µm, respectively. After the CAD and SLM processes, the mean marginal and internal fit discrepancies were 18.4 to 40.9 µm and 39.1 to 47.1 µm, respectively. The SLM process itself resulted in a positive increase of the marginal (6.0 - 16.7 µm) and internal (9.0 - 15.7 µm) fit discrepancies. CONCLUSION: The CAD and SLM processes affected the fit of CoCr crowns and varied based on the preparation designs. Typically, the shoulder-lip and sharp line angle designs had a more significant effect on crown fit. However, the differences between the design groups were relatively small, especially when compared to fit discrepancies observed clinically.

8.
J Prosthodont Res ; 63(1): 58-65, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30309743

RESUMO

PURPOSE: This study aimed to investigate the effects of selective laser melting (SLM), milling methods, and casting on the behavior of titanium clasp. METHODS: The clasp and its die simulating the molar were designed using 3D software. Clasp specimens were fabricated using SLM approaches (SLM Ti) and computerized numerical control (CNC) milling technology (Milling CPTi). Cast clasps of the same forms were also prepared as controls using titanium alloy powder (Cast Ti) and commercial pure titanium (Cast CPTi), following the conventional casting methods. The surface roughness and accuracy of clasps were analyzed. The changes in retentive force and permanent deformation were measured up to 10,000 insertion/removal cycles. One-way analysis of variance and Tukey's test or Kruskal-Wallis H test were performed for data analysis and comparisons. RESULTS: The Milling CPTi clasps had a smoother inner surface than the other groups (p<0.05). The accuracy of the inner surface showed no significant difference among the groups, whereas that of the outer surface showed significant differences (p<0.05). The SLM Ti clasp had significantly higher retentive forces than the other groups (p<0.05), but it rapidly reduced after 2000 insertion/removal cycles until the fracture of all specimens was at 4000 cycles. The Milling CPTi clasps had more permanent deformation, but the rate of reduction of retentive force was only 9.5% (at 10,000 cycles). CONCLUSIONS: Milling has the potential to replace casting for fabricating removable partial denture (RPD) titanium clasps. However, SLM should be further improved for fabricating RPD titanium clasps before clinical application.


Assuntos
Desenho Assistido por Computador , Grampos Dentários , Planejamento de Prótese Dentária/métodos , Prótese Parcial Removível , Congelamento , Lasers , Titânio , Técnica de Fundição Odontológica , Propriedades de Superfície
9.
J Adv Prosthodont ; 10(1): 8-17, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29503709

RESUMO

PURPOSE: The study aimed to identify the accuracy and reproducibility of preparations made by gypsum materials of various colors using quantitative and semi-quantitative three-dimensional (3D) approach. MATERIALS AND METHODS: A titanium maxillary first molar preparation was created as reference dataset (REF). Silicone impressions were duplicated from REF and randomized into 6 groups (n=8). Gypsum preparations were formed and grouped according to the color of gypsum materials, and light-scanned to obtain prepared datasets (PRE). Then, in terms of accuracy, PRE were superimposed on REF using the best-fit-algorithm and PRE underwent intragroup pairwise best-fit alignment for assessing reproducibility. Root mean square deviation (RMSD) and degrees of similarity (DS) were computed and analyzed with SPSS 20.0 statistical software (α=.05). RESULTS: In terms of accuracy, PREs in 3D directions were increased in the 6 color groups (from 19.38 to 20.88 µm), of which the marginal and internal variations ranged 51.36 - 58.26 µm and 18.33 - 20.04 µm, respectively. On the other hand, RMSD value and DS-scores did not show significant differences among groups. Regarding reproducibility, both RMSD and DS-scores showed statistically significant differences among groups, while RMSD values of the 6 color groups were less than 5 µm, of which blue color group was the smallest (3.27 ± 0.24 µm) and white color group was the largest (4.24 ± 0.36 µm). These results were consistent with the DS data. CONCLUSION: The 3D volume of the PREs was predisposed towards an increase during digitalization, which was unaffected by gypsum color. Furthermore, the reproducibility of digitalizing scanning differed negligibly among different gypsum colors, especially in comparison to clinically observed discrepancies.

10.
J Healthc Eng ; 2017: 7495606, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29065641

RESUMO

INTRODUCTION: Osseointegration is required for prosthetic implant, but the various bone-implant interfaces of orthodontic miniscrews would be a great interest for the orthodontist. There is no clear consensus regarding the minimum amount of bone-implant osseointegration required for a stable miniscrew. The objective of this study was to investigate the influence of different bone-implant interfaces on the miniscrew and its surrounding tissue. METHODS: Using finite element analysis, an advanced approach representing the bone-implant interface is adopted herein, and different degrees of bone-implant osseointegration were implemented in the FE models. A total of 26 different FE analyses were performed. The stress/strain patterns were calculated and compared, and the displacement of miniscrews was also evaluated. RESULTS: The stress/strain distributions are changing with the various bone-implant interfaces. In the scenario of 0% osseointegration, a rather homogeneous distribution was predicted. After 15% osseointegration, the stress/strains were gradually concentrated on the cortical bone region. The miniscrew experienced the largest displacement under the no osseointegra condition. The maximum displacement decreases sharply from 0% to 3% and tends to become stable. CONCLUSION: From a biomechanical perspective, it can be suggested that orthodontic loading could be applied on miniscrews after about 15% osseointegration without any loss of stability.


Assuntos
Interface Osso-Implante , Desenho de Aparelho Ortodôntico/métodos , Ortodontia/instrumentação , Osseointegração , Fenômenos Biomecânicos , Parafusos Ósseos , Implantes Dentários , Análise do Estresse Dentário/métodos , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Mandíbula , Modelos Teóricos , Procedimentos de Ancoragem Ortodôntica , Estresse Mecânico , Propriedades de Superfície
11.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 33(5): 470-3, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26688937

RESUMO

OBJECTIVE: To investigate the effects of different tooth preparations on three-dimensional adaption of computer aided design and computer aided manufacturing (CAD/CAM) crowns based on the reverse engineering. METHODS: The tooth preparation model of the left maxillary first molar was scanned to build five different tooth preparations using the NX Imageware 13.2 software. The resin cores (n=8) were designed with the exocad software. The scanning data of the inner surface of each resin core were used to analyze the three-dimensional adaption with the Geomagic Qualify 12 software. RESULTS: According to the color-coded deviation images, the deviation of the heavy chamfer shoulder was the smallest and the most uniform, whereas the other groups with sharp lines showed large deviation. After statistical analysis, the total deviation of the heavy chamfer shoulder, 135° shoulder, feather shoulder, 90° shoulder with lipped margins, and sharp marginal ridges preparation were (16.88±2.83), (26.88±3.61), (53.56±4.30), (51.38±4.46), and (47.19±4.62) µm. A statistical significance was observed between the heavy chamfer and 135° shoulders (P<0.05). The other groups fitted poorly, without statistical significance between each group (P>0.05). CONCLUSION: Three-dimensional analysis using a computer is a preferable method to study the three-dimensional adaption of crowns. The heavy chamfer shoulder and round line preparation are clinically recommended. However, feather shoulder, 90° shoulder with lipped margins, and sharp marginal ridge preparation should be avoided.


Assuntos
Adaptação Marginal Dentária , Preparo Prostodôntico do Dente , Resinas Compostas , Desenho Assistido por Computador , Coroas , Planejamento de Prótese Dentária , Humanos , Dente Molar , Preparo do Dente
12.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 28(1): 29-33, 2010 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-20337070

RESUMO

OBJECTIVE: To study the effect of different optical impression methods in Cerec 3D/Inlab MC XL system on marginal and internal fit of all-ceramic crowns. METHODS: A right mandibular first molar in the standard model was used to prepare full crown and replicated into thirty-two plaster casts. Sixteen of them were selected randomly for bonding crown and the others were used for taking optical impression, in half of which the direct optical impression taking method were used and the others were used for the indirect method, and then eight Cerec Blocs all-ceramic crowns were manufactured respectively. The fit of all-ceramic crowns were evaluated by modified United States Public Health Service (USPHS) criteria and scanning electron microscope (SEM) imaging, and the data were statistically analyzed with SAS 9.1 software. RESULTS: The clinically acceptable rate for all marginal measurement sites was 87.5% according to USPHS criteria. There was no statistically significant difference in marginal fit between direct and indirect method group (P > 0.05). With SEM imaging, all marginal measurement sites were less than 120 microm and no statistically significant difference was found between direct and indirect method group in terms of marginal or internal fit (P > 0.05). But the direct method group showed better fit than indirect method group in terms of mesial surface, lingual surface, buccal surface and occlusal surface (P < 0.05). The distal surface's fit was worse and the obvious difference was observed between mesial surface and distal surface in direct method group (P < 0.01). CONCLUSION: Under the conditions of this study, the optical impression method had no significant effect on marginal fit of Cerec Blocs crowns, but it had certain effect on internal fit. Overall all-ceramic crowns appeared to have clinically acceptable marginal fit.


Assuntos
Coroas , Planejamento de Prótese Dentária , Cerâmica , Desenho Assistido por Computador , Porcelana Dentária , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA