Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1405142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904052

RESUMO

Objectives: Thyroid cancer rarely occurs in children and adolescents. Molecular markers such as BRAF, RAS, and RET/PTC have been widely used in adult PTC. It is currently unclear whether these molecular markers have equivalent potential for application in pediatric patients. This study aims to explore the potential utility of a multi-gene conjoint analysis based on next-generation targeted sequencing for pediatric papillary thyroid carcinoma (PTC). Materials and methods: The patients diagnosed with PTC (aged 18 years or younger) in the pediatrics department of Lishui District Hospital of Traditional Chinese Medicine were retrospectively screened. A targeted enrichment and sequencing analysis of 116 genes associated with thyroid cancer was performed on paraffin-embedded tumor tissues and paired paracancerous tissue of fifteen children (average age 14.60) and nine adults (average age 49.33) PTC patients. Demographic information, clinical indicators, ultrasonic imaging information and pathological data were collected. The Kendall correlation test was used to establish a correlation between molecular variations and clinical characteristics in pediatric patients. Results: A sample of 15 pediatric PTCs revealed a detection rate of 73.33% (11/15) for driver gene mutations BRAF V600E and RET fusion. Compared to adult PTCs, the genetic mutation landscape of pediatric PTCs was more complex. Six mutant genes overlap between the two groups, and an additional seventeen unique mutant genes were identified only in pediatric PTCs. There was only one unique mutant gene in adult PTCs. The tumor diameter of pediatric PTCs tended to be less than 4cm (p<0.001), and the number of lymph node metastases was more than five (p<0.001). Mutations in specific genes unique to pediatric PTCs may contribute to the onset and progression of the disease by adversely affecting hormone synthesis, secretion, and action mechanisms, as well as the functioning of thyroid hormone signaling pathways. But, additional experiments are required to validate this hypothesis. Conclusion: BRAF V600E mutation and RET fusion are involved in the occurrence and development of adolescent PTC. For pediatric thyroid nodules that cannot be determined as benign or malignant by fine needle aspiration biopsy, multiple gene combination testing can provide a reference for personalized diagnosis and treatment by clinical physicians.


Assuntos
Mutação , Proteínas Proto-Oncogênicas B-raf , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Feminino , Adolescente , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/terapia , Masculino , Criança , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Estudos Retrospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Adulto , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Proteínas Proto-Oncogênicas c-ret/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise Mutacional de DNA/métodos
2.
Chemosphere ; 196: 453-466, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29324385

RESUMO

Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells.


Assuntos
Arsênio/toxicidade , Autofagia/efeitos dos fármacos , Selênio/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Arsênio/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Interações Medicamentosas , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Selênio/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos
3.
Environ Toxicol Pharmacol ; 57: 175-180, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29278807

RESUMO

Polyphenols have many beneficial effects and an effective disease therapeutic auxiliary drug. Previously, myricetin, a polyphenol, had been reported to possess various biological effects on human physiology. However, mechanism of myricetin on apoptosis induced in PC12 cells is still unclear. PC12 cells were treated with myricetin in two concentration levels comprising 0.1 and 1 µM under serum-free condition. As a result, morphological changes were observed using trypan blue assay. DNA fragmentation was determined by DNA ladder assay to evaluate DNA damage levels. Western blotting results showed that cytosolic cytochrome c which was released from mitochondria. Subsequently, tumor suppressor gene p53, pro-apoptotic and anti-apoptotic Bcl-2 family proteins Bax and Bcl-2 were expressed. The caspase cascade reaction was induced through caspase 3 and 9 expression. From these results, it is suggested that myricetin significantly enhanced the apoptosis induced by serum deprivation in a dose-dependent manner in PC12 cells.


Assuntos
Flavonoides/farmacologia , Mitocôndrias/efeitos dos fármacos , Soro , Animais , Apoptose/efeitos dos fármacos , Caspase 3 , Caspase 9/metabolismo , Citocromos c/metabolismo , Fragmentação do DNA , Mitocôndrias/metabolismo , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA