Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(42): 9456-9463, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830914

RESUMO

Large area absorbers with localized defect emission are of interest for energy concentration via the antenna effect. Transfer between 2D and 0D quantum-confined structures is advantageous as it affords maximal lateral area antennas with continuously tunable emission. We report the quantum efficiency of energy transfer in in situ grown HgTe nanoplatelet (NPL)/quantum dot (QD) heterostructures to be near unity (>85%), while energy transfer in separately synthesized and well separated solutions of HgTe NPLs to QDs only reaches 47 ± 11% at considerably higher QD concentrations. Using Kinetic Monte Carlo simulations, we estimate an exciton diffusion constant of 1-10 cm2/s in HgTe NPLs, the same magnitude as that of 2D semiconductors. We also simulate in-solution energy transfer between NPLs and QDs, recovering an R-4 dependence consistent with 2D-0D near-field energy transfer even in randomly distributed NPL/QD mixtures. This highlights the advantage of NPLs 2D morphology and the efficiency of NPL/QD heterostructures and mixtures for energy harvesting.

2.
J Phys Chem Lett ; 12(20): 4958-4964, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34010003

RESUMO

The influence of external dielectric environments is well understood for 2D semiconductor materials but overlooked for colloidally grown II-VI nanoplatelets (NPLs). In this work, we synthesize MX (M = Cd, Hg; X = Se, Te) NPLs of varying thicknesses and apply the Elliott model to extract exciton binding energies-reporting values in good agreement with prior methods and extending to less studied cadmium telluride and mercury chalcogenide NPLs. We find that the exciton binding energy is modulated both by the relative effect of internal vs external dielectric and by the thickness of the semiconductor material. An analytical model shows dielectric screening increases the exciton binding energy relative to the bulk by distorting the Coulombic potential across the NPL surface. We further confirm this effect by decreasing and recovering the exciton binding energy of HgTe NPLs through washing in polarizable solvents. Our results illustrate NPLs are colloidal analogues of van der Waals 2D semiconductors and point to surface modification as an approach to control photophysics and device properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA