Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 2): 129613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246440

RESUMO

The effects of pulsed electric field combined with ultrasound (PEF-US) on the recovery of polyphenols from litchi peels were investigated. In addition, the optimal purification parameters for polyphenol extracts and their biological activities were also explored in this study. Single-factor and orthogonal experiments were used to optimize the extraction conditions of polyphenols. After optimization, the total phenol content (TPC) of the sample extracted by PEF-US was 2.30 times higher than that of the sample extracted by traditional hot-water extraction. The mechanism of PEF-US enhancing polyphenol recovery was also revealed by morphological analysis of the powder surface. LX-7 was the best resin by comparing the purification effect of nine macroporous resins. The optimum conditions for purification of litchi peel polyphenols by LX-7 resin were also optimized through adsorption and desorption experiments. UHPLC-MS and HPLC results revealed that gentisic acid, catechin, procyanidin A2 and procyanidin B1 are four main substances in purified samples. The results of bioactivity experiments showed that the purified polyphenol samples had strong antioxidant and antibacterial activity. Overall, PEF-US is an efficient method for recovering polyphenols from litchi peels. Our study also provides a strategy for the comprehensive utilization of fruit processing waste.


Assuntos
Litchi , Polifenóis , Frutas/química , Extratos Vegetais , Antioxidantes/farmacologia
2.
Int J Biol Macromol ; 247: 125716, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37419258

RESUMO

In this study, a novel carboxymethylcellulose / ZnO / chitosan (CMC / ZnO / Cs) hydrogel microbeads loaded with crosslinked porous starch / curcumin (CPS / Cur) were designed and prepared to improve the encapsulation efficiency of curcumin for drug delivery to specific sites. It was found that the total pore volume of crosslinked porous starch (CPS) was increased by 1150 % when compared to the native starch (NS), and the adsorption ratio of curcumin by CPS was enhanced by 27 % when compared to NS. Secondly, the swelling ratio of composite hydrogel microbeads was within 25 % in an acidic environment at pH 1.2, and the swelling ratio of hydrogel microbeads sharply increased to 320 % ~ 370 % at pH 6.8 and 7.4. In addition, the results of in vitro simulated release experiments showed that the released amount of hydrogel microbeads loaded with NS/Cur and CPS/Cur in SGF were within 7 % in simulated gastric fluid (SGF). The highest released amount of curcumin was 65.26 % for hydrogel beads loaded with CPS/Cur, which was 26 % lower than that of hydrogel microbeads loaded with Cur in simulated intestinal fluid (SIF). In simulated colonic fluid (SCF), the released amount of hydrogel microbeads loaded with CPS/Cur and Cur were 73.96 % and 91.69 %, respectively. In conclusion, pH-sensitive drug delivery system with good drug stability and bioavailability were successfully prepared with carboxymethylcellulose / ZnO / chitosan bead, suitable targeting drug delivery to the small intestine.


Assuntos
Quitosana , Curcumina , Óxido de Zinco , Hidrogéis , Carboximetilcelulose Sódica , Liberação Controlada de Fármacos , Microesferas , Portadores de Fármacos , Concentração de Íons de Hidrogênio
3.
Analyst ; 144(15): 4461-4471, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31162494

RESUMO

Microfluidic technology has been extensively employed in biology and medicine since the field emerged in the 1990s. By utilizing microfluidic approaches, a variety of vascular system-related structures and functions have been mimicked on in vitro platforms. Herein, we begin by introducing microfluidic circulatory devices for the study of two-dimensional (2D) endothelial cells culture. Next, we focus on recent progress on on-chip mimicry of native vasculature, specifically generation of complex three-dimensional (3D) structures within cell-laden hydrogels using microfluidics and self-assembly-based methods. The utilization of microfluidic technology will facilitate the construction of progressively biomimetic in vitro models that have great potential in complementing existing animal models. We envision such platforms to be utilized in a wide range of applications involving vascular systems, including microphysiological studies, drug screening, and disease modeling.


Assuntos
Biomimética/métodos , Vasos Sanguíneos/fisiologia , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Biomimética/instrumentação , Técnicas de Cultura de Células , Linhagem Celular , Células Endoteliais/fisiologia , Humanos , Microfluídica/instrumentação , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
4.
Lab Chip ; 17(16): 2713-2739, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28702608

RESUMO

Point-of-care testing (POCT) devices fulfil a critical need in the modern healthcare ecosystem, enabling the decentralized delivery of imperative clinical strategies in both developed and developing worlds. To achieve diagnostic utility and clinical impact, POCT technologies are immensely dependent on effective translation from academic laboratories out to real-world deployment. However, the current research and development pipeline is highly bottlenecked owing to multiple restraints in material, cost, and complexity of conventionally available fabrication techniques. Recently, 3D printing technology has emerged as a revolutionary, industry-compatible method enabling cost-effective, facile, and rapid manufacturing of objects. This has allowed iterative design-build-test cycles of various things, from microfluidic chips to smartphone interfaces, that are geared towards point-of-care applications. In this review, we focus on highlighting recent works that exploit 3D printing in developing POCT devices, underscoring its utility in all analytical steps. Moreover, we also discuss key advantages of adopting 3D printing in the device development pipeline and identify promising opportunities in 3D printing technology that can benefit global health applications.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Testes Imediatos , Impressão Tridimensional , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA