Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794505

RESUMO

Plant fibers have been studied as sources of nanocellulose due to their sustainable features. This study investigated the effects of acid hydrolysis parameters, reaction temperature, and acid concentration on nanocellulose yield from maguey (Agave cantala) fiber. Nanocellulose was produced from the fibers via the removal of non-cellulosic components through alkali treatment and bleaching, followed by strong acid hydrolysis for 45 min using sulfuric acid (H2SO4). The temperature during acid hydrolysis was 30, 40, 50, and 60 °C, and the H2SO4 concentration was 40, 50, and 60 wt. % H2SO4. Results showed that 53.56% of raw maguey fibers were isolated as cellulose, that is, 89.45% was α-cellulose. The highest nanocellulose yield of 81.58 ± 0.36% was achieved from acid hydrolysis at 50 °C using 50 wt. % H2SO4, producing nanocellulose measuring 8-75 nm in diameter and 72-866 nm in length, as confirmed via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. Fourier-transform infrared spectroscopy (FTIR) analysis indicated the chemical transformation of fibers throughout the nanocellulose production process. The zeta potential analysis showed that the nanocellulose had excellent colloidal stability with a highly negative surface charge of -37.3 mV. Meanwhile, X-ray diffraction (XRD) analysis validated the crystallinity of nanocellulose with a crystallinity index of 74.80%. Lastly, thermogravimetric analysis (TGA) demonstrated that the inflection point attributed to the cellulose degradation of the produced nanocellulose is 311.41 °C.

2.
Membranes (Basel) ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37233520

RESUMO

Thermally localized solar-driven water evaporation (SWE) in recent years has increasingly been developed due to the potential of cost-efficient freshwater production from small-scale portable devices. In particular, the multistage SWE has attracted much attention as the systems possess mostly a simple foundational structure and high solar-to-thermal conversion output rates, enough to produce freshwater from 1.5 L m-2h-1 (LMH) to 6 LMH. In this study, the currently designed multistage SWE devices were reviewed and examined based on their unique characteristics as well as their performances in freshwater production. The main distinguishing factors in these systems were the condenser staging design and the spectrally selective absorbers either in a form of high solar absorbing material, photovoltaic (PV) cells for water and electricity co-production, and coupling of absorber and solar concentrator. Other elements of the devices involved differences such as the direction of water flow, the number of layers constructed, and the materials used for each layer of the system. The key factors to consider for these systems include the heat and mass transport in the device, solar-to-vapor conversion efficiency, gain output ratio (representing how many times the latent heat has been reused), water production rate/number of stages, and kWh/number of stages. It was evident that most of the studied devices involved slightly different mechanisms and material compositions to draw out higher efficiency rates from the current limitations. The reviewed designs showed the ability to be adopted into small-scale solar desalination allowing for accessibility of sufficient freshwater in needing regions.

3.
Nanotechnology ; 33(49)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35994941

RESUMO

An essential prerequisite for successful solution blow spinning (SBS) is the presence of effective molecular entanglements of polymers in the solution. However, the fabrication of biopolymer fibers is not as straightforward as synthetic polymers. Particularly for biopolymers such as pectin, molecular entanglements are essential but insufficient for successful spinning through the SBS production method. Such a challenge is due to the biopolymer's complex nature. However, incorporating an easily spinnable polymer precursor, such as polyacrylonitrile (PAN), to pectin effectively enabled the production of fibers from the SBS process. In this process, PAN-assisted pectin nanofibers are produced with average diameters ranging from 410.75 ± 3.73 to 477.09 ± 6.60 nm using a feed flow rate of 5 ml h-1, air pressure of 3 bars, syringe tip to collector distance at 30 cm, and spinning time of 10 min. PAN in DMSO solvent at different volume ratios (i.e. 35%-55% v/v) was critical in assisting pectin to produce nanofibers. The addition of a high molecular weight polymer, PAN, to pectin also improved the viscoelasticity of the solution, eventually contributing to its successful SBS process. Furthermore, the composite SBS-spun fibers obtained suggest that its formation is concentration-dependent.


Assuntos
Mangifera , Nanofibras , Biopolímeros , Dimetil Sulfóxido , Pectinas , Polímeros , Solventes
4.
Nanotechnology ; 31(34): 345602, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32375136

RESUMO

Cellulose-based nanofiber membrane fabrication remains a global challenge, especially the use of alternative and sustainable sources of cellulosic materials. Herein, an easy and highly scalable cellulose-based nanofiber membrane was successfully fabricated using a solution blow spinning (SBS) method. Such membrane fabrication was carried out with the assistance of an easy-to-spin precursor polymer (i.e. polyacrylonitrile (PAN)). Through this strategy, cellulose acetate (CA) was successfully spun into a ready-to-use membrane. The formation of CA with the PAN nanofiber is concentration-dependent and requires high air pressure to effectively overcome the composite precursor's surface tension and eventually produce nanofibers. Favourable CA concentration in PAN (i.e. 50%-65% v/v CAN/PAN) is important to the formation of sufficient molecular entanglement with PAN in solution. Upon fulfilling the optimized CA concentration, high air pressure (i.e. ≥3 bars) is used to produce jet-like polymeric fibers of PAN dragging off CA, forming numerous nanofibers which are then collected into a substrate forming a membrane. Characterizations of the CA/PAN composite nanofiber were carried out using scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis and differential scanning calorimetry (DSC). Such unique composite nanofiber membranes have potential as filters and adsorbent membranes for air and water/wastewater applications, as well as for biorefinery applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA