RESUMO
Strain degeneration is an important factor hindering the development of the edible fungus industry. Strain degeneration is associated with the excessive accumulation of reactive oxygen species (ROS) in vivo. Catalase (CAT), an important antioxidant enzyme, can promote the clearance of ROS. In this study, the cat2 gene of Volvariella volvacea was first cloned into an overexpression plasmid via homologous recombination. Finally, through Agrobacterium-mediated transformation, this plasmid was inserted into degenerated strains of V. volvacea T19. The physiological properties, antioxidant properties, ROS content, matrix degradation activity, and cultivation properties of the transformants were tested. The results showed that the cloned cat2 gene was 99.94% similar to the reference sequence. Screening revealed that six positive transformants were successfully obtained. After the overexpression of cat2, the growth rate and biomass of the mycelium increased significantly in the transformant strains (versus the V. volvacea T19 degenerated strains). Moreover, the accumulation of superoxide radical (O2â¢-) and hydrogen peroxide (H2O2) was significantly reduced, and the activity of the enzymes CAT, superoxide dismutase (SOD), glutathione reductase (GR), and glutathione peroxidase (GPX) was significantly increased. Meanwhile, the expression of cat2, Mnsod1, Mnsod2, gpx, and gr was significantly upregulated, and the activity of eight matrix degradation-related enzymes was increased to varying degrees. More importantly, the overexpression of the cat2 gene promoted the regrowth of fruiting bodies in degenerated strains of V. volvacea T19. This study provides a new biotechnological strategy to control the degeneration of V. volvacea and other edible fungi.
Assuntos
Agaricales , Volvariella , Volvariella/genética , Volvariella/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
The fungal fruiting body is the organized mycelium. Tissue isolation and mycelium succession are common methods of fungal species purification and rejuvenation in the production of edible mushrooms. However, repeated succession increases strain degeneration. In this study, we examined the effect of repeated tissue isolation from Volvariella volvacea fruitbodies on the occurrence of degeneration. The results showed that less than four times in succession improved production capacity, however, after 12 successions, the traits indicating strain degeneration were apparent. For instance, the density of aerophytic hyphae, hyphal growth rate and hyphal biomass were gradually reduced, while the hyphae branching was increased. Also, other degenerative traits such as prolonged production cycles and decreased biological efficiency became evident. In particular, after 19 successions, the strain degeneration became so severe no fruiting bodies were produces anymore. Meanwhile, with the increase in successions, the antioxidant enzyme activity decreased, reactive oxygen species (ROS) increased, the number of nuclei decreased, and the mitochondrial membrane potential decreased along with morphological changes in the mitochondria. This study showed that repeated tissue isolation increased oxidative damage in the succession strain due to the accumulation of ROS, causing cellular senescence, in turn, degeneration in V. volvacea strain.