Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2403164, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720548

RESUMO

Surface reconstruction, reorganizing the surface atoms or structure, is a promising strategy to manipulate materials' electrical, electrochemical, and surface catalytic properties. Herein, a rapid surface reconstruction of indium sulfide (In2S3) is demonstrated via a high-temperature flame treatment to improve its charge collection properties. The flame process selectively transforms the In2S3 surface into a diffusionless In2O3 layer with high crystallinity. Additionally, it controllably generates bulk sulfur vacancies within a few seconds, leading to surface-reconstructed In2S3 (sr-In2S3). When using those sr-In2S3 as photoanode for photoelectrochemical water splitting devices, these dual functions of surface In2O3/bulk In2S3 reduce the charge recombination in the surface and bulk region, thus improving photocurrent density and stability. With optimized surface reconstruction, the sr-In2S3 photoanode demonstrates a significant photocurrent density of 8.5 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE), marking a 2.5-fold increase compared to pristine In2S3 (3.5 mA cm-2). More importantly, the sr-In2S3 photoanode exhibits an impressive photocurrent density of 7.3 mA cm-2 at 0.6 V versus RHE for iodide oxidation reaction. A practical and scalable surface reconstruction is also showcased via flame treatment. This work provides new insights for surface reconstruction engineering in sulfide-based semiconductors, making a breakthrough in developing efficient solar-fuel energy devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA