Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Burns Trauma ; 12: tkae012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860010

RESUMO

The hypoxic environment is among the most important factors that complicates the healing of chronic wounds, such as venous leg ulcers, pressure injuries and diabetic foot ulcers, which seriously affects the quality of life of patients. Various oxygen supply treatments are used in clinical practice to improve the hypoxic environment at the wound site. However, problems still occur, such as insufficient oxygen supply, short oxygen infusion time and potential biosafety risks. In recent years, artificial photosynthetic systems have become a research hotspot in the fields of materials and energy. Photosynthesis is expected to improve the oxygen level at wound sites and promote wound healing because the method provides a continuous oxygen supply and has good biosafety. In this paper, oxygen treatment methods for wounds are reviewed, and the oxygen supply principle and construction of artificial photosynthesis systems are described. Finally, research progress on the photosynthetic oxygen production system to promote wound healing is summarized.

2.
RSC Adv ; 14(22): 15431-15440, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741968

RESUMO

In this study, a denitrification biofilter coupled with water electrolysis (DNBF-WE) was developed as a novel heterotrophic-hydrogen autotrophic denitrification system, which could enhance denitrification with limited organic carbon in the secondary effluent. The volumetric denitrification rate of DNBF-WE reached 152.16 g N m-3 d-1 (C/N = 2, I = 60 mA, and HRT = 5 h). Besides, the vertical spatial denitrification of DNBF-WE was explored, with the nitrate removal rate being 49.5%, 16.3%, and 29.3% in the top, middle, and bottom, respectively. The concentration of extracellular polymeric substances (EPSs) was consistent with the denitrification performance vertically. The high-throughput sequencing analysis results revealed that autotrophic denitrification bacteria (e.g. Thauera) gradually enriched along DNBF-WE from top to bottom. The functional gene prediction results illustrated the vertical stratification mechanisms of the denitrification. Both dissimilatory nitrate reduction and denitrification contributed to nitrate removal, and denitrification became more advantageous with an increase in the filter depth. The research on both the performance of DNBF-WE and the characteristics of microbial communities in the vertical zones of the biofilter may lay a foundation for the biofilter denitrification process in practice.

3.
J Control Release ; 368: 355-371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432468

RESUMO

Delayed wound healing caused by bacterial infection remains a major challenge in clinical treatment. Exotoxins incorporated in bacterial extracellular vesicles play a key role as the disease-causing virulence factors. Safe and specific antivirulence agents are expected to be developed as an effective anti-bacterial infection strategy, instead of single antibiotic therapy. Plant-derived extracellular vesicle-like nanoparticles have emerged as promising therapeutic agents for skin diseases, but the elucidations of specific mechanisms of action and clinical transformation still need to be advanced. Here, dandelion-derived extracellular vesicle-like nanoparticles (TH-EVNs) are isolated and exert antivirulence activity through specifically binding to Staphylococcus aureus (S. aureus) exotoxins, thereby protecting the host cell from attack. The neutralization of TH-EVNs against exotoxins has considerable binding force and stability, showing complete detoxification effect in vivo. Then gelatin methacryloyl hydrogel is developed as TH-EVNs-loaded dressing for S. aureus exotoxin-invasive wounds. Hydrogel dressings demonstrate good physical and mechanical properties, thus achieving wound retention and controlled release of TH-EVNs, in addition to promoting cell proliferation and migration. In vivo results show accelerated re-epithelialization, promotion of collagen maturity and reduction of inflammation after treatment. Collectively, the developed TH-EVNs-laden hydrogel dressings provide a potential therapeutic approach for S. aureus exotoxin- associated trauma.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Taraxacum , Hidrogéis/química , Staphylococcus aureus , Cicatrização , Exotoxinas , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Bandagens
4.
Adv Drug Deliv Rev ; 182: 114108, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990792

RESUMO

Within the past decades, extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. Besides EVs, exosome-like nanoparticles (ELNs) derived from plants were also emerging. Comparing to EVs, ELNs are source-widespread, cost-effective and easy to obtain. Their definite activities can be utilized for potential prevention/treatment of an abundance of diseases, including metabolic syndrome, cancer, colitis, alcoholic hepatitis and infectious diseases, which highlights ELNs as promising biotherapeutics. In addition, the potential of ELNs as natural or engineered drug carriers is also attractive. In this review, we tease out the timeline of plant EVs and ELNs, introduce the arising separation, purification and characterization techniques, state the stability and transport manner, discuss the therapeutic opportunities as well as the potential as novel drug carriers. Finally, the challenges and the direction of efforts to realize the clinical transformation of ELNs are also discussed.


Assuntos
Química Farmacêutica/métodos , Portadores de Fármacos/farmacologia , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Plantas/metabolismo , Animais , Biomarcadores , Comunicação Celular/fisiologia , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Estabilidade de Medicamentos , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas/metabolismo , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA