Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3112, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561757

RESUMO

Previous flavivirus (dengue and Zika viruses) studies showed largely spherical particles either with smooth or bumpy surfaces. Here, we demonstrate flavivirus particles have high structural plasticity by the induction of a non-spherical morphology at elevated temperatures: the club-shaped particle (clubSP), which contains a cylindrical tail and a disc-like head. Complex formation of DENV and ZIKV with Fab C10 stabilize the viruses allowing cryoEM structural determination to ~10 Å resolution. The caterpillar-shaped (catSP) Fab C10:ZIKV complex shows Fabs locking the E protein raft structure containing three E dimers. However, compared to the original spherical structure, the rafts have rotated relative to each other. The helical tail structure of Fab C10:DENV3 clubSP showed although the Fab locked an E protein dimer, the dimers have shifted laterally. Morphological diversity, including clubSP and the previously identified bumpy and smooth-surfaced spherical particles, may help flavivirus survival and immune evasion.


Assuntos
Anticorpos Antivirais/metabolismo , Vírus da Dengue/ultraestrutura , Proteínas do Envelope Viral/metabolismo , Zika virus/ultraestrutura , Aedes , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/imunologia , Linhagem Celular , Microscopia Crioeletrônica , Dengue/imunologia , Dengue/terapia , Dengue/virologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Vírus da Dengue/metabolismo , Evasão da Resposta Imune , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Mesocricetus , Multimerização Proteica , Propriedades de Superfície , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/ultraestrutura , Ligação Viral , Zika virus/imunologia , Zika virus/metabolismo , Infecção por Zika virus
3.
Cell Rep ; 31(4): 107584, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32348755

RESUMO

Human antibody SIgN-3C neutralizes dengue virus (DENV) and Zika virus (ZIKV) differently. DENV:SIgN-3C Fab and ZIKV:SIgN-3C Fab cryoelectron microscopy (cryo-EM) complex structures show Fabs crosslink E protein dimers at extracellular pH 8.0 condition and also when further incubated at acidic endosomal conditions (pH 8.0-6.5). We observe Fab binding to DENV (pH 8.0-5.0) prevents virus fusion, and the number of bound Fabs increase (from 120 to 180). For ZIKV, although there are already 180 copies of Fab at pH 8.0, virus structural changes at pH 5.0 are not inhibited. The immunoglobulin G (IgG):DENV structure at pH 8.0 shows both Fab arms bind to epitopes around the 2-fold vertex. On ZIKV, an additional Fab around the 5-fold vertex at pH 8.0 suggests one IgG arm would engage with an epitope, although the other may bind to other viruses, causing aggregation. For DENV2 at pH 5.0, a similar scenario would occur, suggesting DENV2:IgG complex would aggregate in the endosome. Hence, a single antibody employs different neutralization mechanisms against different flaviviruses.


Assuntos
Flavivirus/patogenicidade , Testes de Neutralização/métodos , Humanos
4.
Nat Commun ; 11(1): 895, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060358

RESUMO

Structures of flavivirus (dengue virus and Zika virus) particles are known to near-atomic resolution and show detailed structure and arrangement of their surface proteins (E and prM in immature virus or M in mature virus). By contrast, the arrangement of the capsid proteins:RNA complex, which forms the core of the particle, is poorly understood, likely due to inherent dynamics. Here, we stabilize immature Zika virus via an antibody that binds across the E and prM proteins, resulting in a subnanometer resolution structure of capsid proteins within the virus particle. Fitting of the capsid protein into densities shows the presence of a helix previously thought to be removed via proteolysis. This structure illuminates capsid protein quaternary organization, including its orientation relative to the lipid membrane and the genomic RNA, and its interactions with the transmembrane regions of the surface proteins. Results show the capsid protein plays a central role in the flavivirus assembly process.


Assuntos
Proteínas do Capsídeo/metabolismo , Montagem de Vírus , Infecção por Zika virus/virologia , Zika virus/fisiologia , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Zika virus/química , Zika virus/genética
5.
Nat Commun ; 7: 13679, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882950

RESUMO

The rapid spread of Zika virus (ZIKV), which causes microcephaly and Guillain-Barré syndrome, signals an urgency to identify therapeutics. Recent efforts to rescreen dengue virus human antibodies for ZIKV cross-neutralization activity showed antibody C10 as one of the most potent. To investigate the ability of the antibody to block fusion, we determined the cryoEM structures of the C10-ZIKV complex at pH levels mimicking the extracellular (pH8.0), early (pH6.5) and late endosomal (pH5.0) environments. The 4.0 Å resolution pH8.0 complex structure shows that the antibody binds to E proteins residues at the intra-dimer interface, and the virus quaternary structure-dependent inter-dimer and inter-raft interfaces. At pH6.5, antibody C10 locks all virus surface E proteins, and at pH5.0, it locks the E protein raft structure, suggesting that it prevents the structural rearrangement of the E proteins during the fusion event-a vital step for infection. This suggests antibody C10 could be a good therapeutic candidate.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Zika virus/imunologia , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/ultraestrutura , Reações Cruzadas/imunologia , Microscopia Crioeletrônica , Vírus da Dengue/imunologia , Concentração de Íons de Hidrogênio , Zika virus/ultraestrutura
6.
J Gen Virol ; 94(Pt 10): 2215-2220, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23884363

RESUMO

Dengue virus (DENV) infection affects millions of people annually and has the potential to cause fatal haemorrhagic fever and shock. Although the underlying pathogenesis of severe dengue illness is still unclear, current evidence suggests that severe disease progression has an immunological basis. In this study, we investigated the role of caspase-1 during host-pathogen interactions within DENV-infected human monocytes. Using DENV-infected primary monocytes, we examined caspase-1 at various levels of gene expression and probed for potential immune consequences mediated by caspase-1 such as secretion of pro-inflammatory IL-1ß and pyroptotic cell death. We report that DENV-infected monocytes upregulated functional caspase-1 mRNA and pro-caspase-1 activation as a late response to infection. In addition, we found that caspase-1 is responsible for IL-1ß secretion and pyroptosis of DENV-infected monocytes. Together, our results show that late caspase-1 activation within DENV-infected monocytes can contribute to pro-inflammatory outcomes that might play a role in dengue immunopathogenesis.


Assuntos
Apoptose/fisiologia , Caspase 1/metabolismo , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Monócitos/virologia , Caspase 1/genética , Células Cultivadas , Humanos , Interleucina-1beta/genética , Monócitos/fisiologia , Fatores de Tempo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA