Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.198
Filtrar
1.
J Hypertens ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38690935

RESUMO

OBJECTIVE: Proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling. Asprosin, a newly discovered protein hormone, is involved in metabolic diseases. Little is known about the roles of asprosin in cardiovascular diseases. This study focused on the role and mechanism of asprosin on VSMC proliferation and migration, and vascular remodeling in a rat model of hypertension. METHODS AND RESULTS: VSMCs were obtained from the aortic media of 8-week-old male Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Asprosin was upregulated in the VSMCs of SHR. For in vitro studies, asprosin promoted VSMC proliferation and migration of WKY and SHR, and increased Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity, NOX1/2/4 protein expressions and superoxide production. Knockdown of asprosin inhibited the proliferation, migration, NOX activity, NOX1/2 expressions and superoxide production in the VSMCs of SHR. The roles of asprosin in promoting VSMC proliferation and migration were not affected by hydrogen peroxide scavenger, but attenuated by superoxide scavenger, selective NOX1 or NOX2 inhibitor. Toll-like receptor 4 (TLR4) was upregulated in SHR, TLR4 knockdown inhibited asprosin overexpression-induced proliferation, migration and oxidative stress in VSMCs of WKY and SHR. Asprosin was upregulated in arteries of SHR, and knockdown of asprosin in vivo not only attenuated oxidative stress and vascular remodeling in aorta and mesentery artery, but also caused a subsequent persistent antihypertensive effect in SHR. CONCLUSIONS: Asprosin promotes VSMC proliferation and migration via NOX-mediated superoxide production. Inhibition of endogenous asprosin expression attenuates VSMC proliferation and migration, and vascular remodeling of SHR.

2.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746153

RESUMO

Noroviruses are the leading global cause of acute gastroenteritis, responsible for 685 million annual cases. While all age groups are susceptible to noroviruses, children are vulnerable to more severe infections than adults, underscored by 200 million pediatric cases and up to 200,000 deaths in children annually. Understanding the basis for the increased vulnerability of young hosts is critical to developing effective treatments. The pathogenic outcome of any enteric virus infection is governed by a complex interplay between the virus, intestinal microbiota, and host immune factors. A central mediator in these complex relationships are host- and microbiota-derived metabolites. Noroviruses bind a specific class of metabolites, bile acids, which are produced by the host and then modified by commensal bacterial enzymes. Paradoxically, bile acids can have both proviral and antiviral roles during norovirus infections. Considering these opposing effects, the microbiota-regulated balance of the bile acid pool may be a key determinant of the pathogenic outcome of a norovirus infection. The bile acid pool in newborns is unique due to immaturity of host metabolic pathways and developing gut microbiota, which could underlie the vulnerability of these hosts to severe norovirus infections. Supporting this concept, we demonstrate herein that microbiota and their bile acid metabolites protect from severe norovirus diarrhea whereas host-derived bile acids promote disease. Remarkably, we also report that maternal bile acid metabolism determines neonatal susceptibility to norovirus diarrhea during breastfeeding by delivering proviral bile acids to the newborn. Finally, directed targeting of maternal and neonatal bile acid metabolism can protect the neonatal host from norovirus disease. Altogether, these data support the conclusion that metabolic immaturity in newborns and ingestion of proviral maternal metabolites in breast milk are the central determinants of heightened neonatal vulnerability to norovirus disease.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38740364

RESUMO

The study characterized the transcriptionally regulatory mechanism and functions of three zinc (Zn) transporters (znt4, znt5 and znt10) in Zn2+ metabolism in yellow catfish (Pelteobagrus fulvidraco), commonly freshwater fish in China and other countries. We cloned the sequences of znt4 promoter, spanning from -1217 bp to +80 bp relative to TSS (1297 bp); znt5, spanning from -1783 bp to +49 bp relative to TSS (1832 bp) and znt10, spanning from -1923 bp to +190 bp relative to TSS (2113 bp). In addition, after conducting the experiments of sequential deletion of promoter region and mutation of potential binding site, we found that the Nrf2 binding site (-607/-621 bp) and Klf4 binding site (-5/-14 bp) were required on znt4 promoter, the Mtf-1 binding site (-1674/-1687 bp) and Atf4 binding site (-444/-456 bp) were required on znt5 promoter and the Atf4 binding site (-905/-918 bp) was required on znt10 promoter. Then, according to EMSA and ChIP, we found that Zn2+ incubation increased DNA affinity of Atf4 to znt5 or znt10 promoter, but decreased DNA affinity of Nrf2 to znt4 promoter, Klf4 to znt4 promoter and Mtf-1 to znt5 promoter. Using fluorescent microscopy, it was revealed that Znt4 and Znt10 were located in the lysosome and Golgi, and Znt5 was located in the Golgi. Finally, we found that znt4 knockdown reduced the zinc content of lysosome and Golgi in the control and zinc-treated group; znt5 knockdown reduced the zinc content of Golgi in the control and zinc-treated group and znt10 knockdown reduced the zinc content of Golgi in the zinc-treated group. High dietary zinc supplement up-regulated Znt4 and Znt5 protein expression. Above all, for the first time, we revealed that Klf4 and Nrf2 transcriptionally regulated the activities of znt4 promoter; Mtf-1 and Atf4 transcriptionally regulated the activities of znt5 promoter and Atf4 transcriptionally regulated the activities of znt10 promoter, which provided innovative regulatory mechanism of zinc transporting in yellow catfish. Our study also elucidated their subcellular location, and regulatory role of zinc homeostasis in yellow catfish.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38571313

RESUMO

CONTEXT: Vitamin D status has been associated with risk of type 2 diabetes (T2D), but evidence is scarce regarding whether such relation differs by glycemic status. OBJECTIVE: To prospectively investigate the association between serum 25-hydroxyvitamin D [25(OH)D] and risk of incident T2D across the glycemic spectrum and the modification effect of genetic variants in vitamin D receptor (VDR). METHODS: This prospective study included 379,699 participants without T2D at baseline from the UK Biobank. Analyses were performed according to glycemic status and HbA1c levels. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% CIs. RESULTS: During a median of 14.1 years of follow-up, 6,315 participants with normoglycemia and 9,085 prediabetes patients developed T2D. Compared to individuals with 25(OH)D <25 nmol/L, the multivariable-adjusted hazard ratios (95% CIs) of incident T2D for those with 25(OH)D ≥75 nmol/L was 0.62 (0.56, 0.70) among the normoglycemia and 0.64 (0.58, 0.70) among the prediabetes. A significant interaction was observed between 25(OH)D and VDR polymorphisms among participants with prediabetes (Pinteraction=0.017), whereby the reduced HR of T2D associated with higher 25(OH)D was more prominent in those carrying T allele of rs1544410. Triglycerides levels mediated 26% and 34% of the association between serum 25(OH)D and incident T2D among participants with normoglycemia and prediabetes. CONCLUSIONS: Higher serum 25(OH)D concentrations were associated with lower T2D risk across the glycemic spectrum below the threshold for diabetes, and the relations in prediabetes were modified by VDR polymorphisms. Improving lipid profile, mainly triglycerides, accounted for part of the favorable associations.

6.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676208

RESUMO

The era of Industry 4.0 is gradually transforming our society into a data-driven one, which can help us uncover valuable information from accumulated data, thereby improving the level of social governance. The detection of anomalies, is crucial for maintaining societal trust and fairness, yet it poses significant challenges due to the ubiquity of anomalies and the difficulty in identifying them accurately. This paper aims to enhance the performance of the current Graph Convolutional Network (GCN)-based Graph Anomaly Detection (GAD) algorithm on datasets with extremely low proportions of anomalous labels. This goal is achieved through modifying the GCN network structure and conducting feature extraction, thus fully utilizing three types of information in the graph: node label information, node feature information, and edge information. Firstly, we theoretically demonstrate the relationship between label propagation and feature convolution, indicating that the Label Propagation Algorithm (LPA) can serve as a regularization penalty term for GCN, aiding in training and enabling learnable edge weights, providing a basis for incorporating node label information into GCN networks. Secondly, we introduce a method to aggregate node and edge features, thereby incorporating edge information into GCN networks. Finally, we design different GCN trainable weights for node features and co-embedding features. This design allows different features to be projected into different spaces, greatly enhancing model expressiveness. Experimental results on the DGraph dataset demonstrate superior AUC performance compared to baseline models, highlighting the feasibility and efficacy of the proposed approach in addressing GAD tasks in the scene with extremely low proportions of anomalous data.

7.
J Nutr ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636707

RESUMO

BACKGROUND: Stanniocalcin 2 (STC2), a glycoprotein hormone, is extensively expressed in various organs and tissues, particularly in the mammary gland. STC2 plays a crucial role in enabling cells to adapt to stress conditions and avert apoptosis. The efficiency of milk production is closely linked to both the quantity and quality of mammary cells. Yet, there remains a dearth of research on the impact of STC2 on mammary cells' activity in dairy cows. OBJECTIVES: The objective of this study was to investigate the effects of STC2 on the viability of mammary epithelial cells in dairy cows and to elucidate the underlying mechanisms. METHODS: First, the Gene Expression Profiling and Interactive Analysis database was employed to perform survival analysis on STC2 expression in relation to prognosis using The Cancer Genome Atlas and GETx data. Subsequently, the basic physical and chemical properties, gene expression, and potential signaling pathways involved in the growth of dairy cow mammary epithelial cells were determined using STC2 knockdown. RESULTS: STC2 knockdown significantly suppressed autophagy in mammary epithelial cells of dairy cows. Moreover, STC2 knockdown upregulated glutathione peroxidase 4 protein expression, elicited an elevation in lipid ROS concentrations, and inhibited the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, consequently repressing downstream genes involved in lipid synthesis regulated by mTORC1 and ultimately inducing ferroptosis. CONCLUSIONS: The findings of our study suggest that STC2 suppresses autophagy and ferroptosis through the activation of mTORC1. Mechanically, STC2 exerts an inhibitory effect on ferroptosis by activating antioxidative stress-related proteins, such as glutathione peroxidase 4, to suppress lipid ROS production and stimulating the mTORC1 signaling pathway to enhance the expression of genes associated with lipid synthesis.

8.
Food Funct ; 15(9): 5050-5062, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656457

RESUMO

Background: The association of dairy product consumption with nonalcoholic fatty liver disease (NAFLD) and cirrhosis remains controversial. This study aimed to prospectively investigate the associations between the consumption of the different types of dairy products, genetic predisposition, and the risks of NAFLD and cirrhosis. Methods: This cohort study included 190 145 participants from the UK Biobank Study. The consumption of the different types of dairy products was assessed based on the Oxford WebQ at baseline and defined as the sum of milk, yogurt, and cheese. NAFLD and cirrhosis were evaluated using hospital inpatient records and death data in the UK Biobank. The weighted genetic risk score (GRS) for NAFLD and cirrhosis was constructed using 5 and 6 single-nucleotide variants (SNVs), respectively. Cox proportional hazards regression models were utilized to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between genetic factors and different types of dairy products with the incidence of NAFLD and cirrhosis. Results: During a median follow-up of 11.6 years, 1512 NAFLD and 556 cirrhosis cases were ascertained. After adjusting for several potential confounders, the HRs (95% CIs) (Q4 vs. Q1) of NAFLD were 0.86 (0.74, 0.995) for total dairy products, 0.96 (0.84, 1.09) for high-fat dairy products, 0.78 (0.67, 0.92) for low-fat dairy products, 0.86 (0.74, 0.99) for unfermented dairy products, and 0.79 (0.68, 0.91) for fermented dairy products. The multivariable-adjusted HRs (95% CIs) (Q4 vs. Q1) of cirrhosis were 0.75 (0.59, 0.96) for total dairy products, 0.97 (0.78, 1.19) for high-fat dairy products, 0.67 (0.51, 0.89) for low-fat dairy products, 0.75 (0.59, 0.96) for unfermented dairy products, and 0.71 (0.56, 0.90) for fermented dairy products. The associations of high-fat dairy products and fermented dairy products with NAFLD and cirrhosis were found to be nonlinear (P for nonlinear <0.05). No interaction was observed between dairy product consumption and NAFLD or cirrhosis genetic susceptibility. Conclusions: Higher consumption of dairy products, except for high-fat dairy, was correlated with lower risks of NAFLD and cirrhosis, regardless of their differences in genetic susceptibility.


Assuntos
Laticínios , Predisposição Genética para Doença , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Feminino , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Cirrose Hepática/epidemiologia , Cirrose Hepática/genética , Adulto , Fatores de Risco , Idoso , Polimorfismo de Nucleotídeo Único , Reino Unido/epidemiologia
9.
Sci Rep ; 14(1): 9309, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654062

RESUMO

Dense matching of remote sensing images is crucial for 3D reconstruction. This study proposes an enhanced dense matching method employing the CPS image denoising algorithm, aiming to boost the SGM algorithm's accuracy and efficiency in remote sensing image matching. The stereo image pair's quality is evaluated using the PSNR index, and a decision-making criterion based on the CPS algorithm is incorporated to determine the need for denoising. Preprocessing steps, including image cropping and pixel coordinate transformation, significantly reduce computational requirements. An epipolar line model, minimizing the disparity between two pixels, is used for calculations. This model is employed to construct an epipolar image, enhancing the accuracy and efficiency of the process. The study conducted experimental validation and analysis of the mismatch rate, running time, and denoising effect of the algorithm using the Middlebury 2021 stereo datasets. Additionally, the matching results of the World-View3 satellite stereo image pairs were visualized and analyzed. The experimental results indicate that the proposed algorithm reduces the average mismatch rate by 13.1% and increases the running speed by about 3 to 4 times compared to the SGBM algorithm. Specifically, the denoising effect reduces the mismatch rate of the reconstructed image by an average of 8.97%. The results indicate that the CPS method effectively addresses dense matching challenges in the presence of image blur and noise, thereby improving the operational efficiency and accuracy of the dense matching algorithm.

10.
Thorac Cancer ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664975

RESUMO

BACKGROUND:  This study aims to analyze breast cancer burden attributable to high body mass index (BMI) and high fasting plasma glucose (FPG) in China from 1990 to 2019. METHODS: Data were obtained from the Global Burden of Disease (GBD) study 2019. Deaths and disability-adjusted life years (DALYs) were used for attributable burden, and age-period-cohort (APC) model was used to evaluate the independent effects of age, period and birth cohort. RESULTS: In 2019, the age-standardized mortality and DALY rates of breast cancer attributable to high BMI were 1.107 (95% UI: 0.311, 2.327) and 29.990 (8.384, 60.713) per 100 000, and mortality and DALY rates attributable to high FPG were 0.519 (0.095, 1.226) and 13.662 (2.482, 32.425) per 100 000. From 1990 to 2019, the age-standardized mortality and DALY rates of breast cancer attributable to high BMI increased by 1.192% and 1.180%, and the trends of high FPG were not statistically significant. The APC results showed that the age effects of high BMI and high FPG-mortality and DALY rates increased, with the highest rates in the age group over 80 years. The birth cohort effects of high BMI showed "inverted V" shapes, while high FPG showed downward trends. CONCLUSIONS: Age was the main reason for the increase of attributable burden, and postmenopausal women were the high-risk groups. Therefore, targeted prevention measures should be developed to improve postmenopausal women's awareness and effectively reduce the prevalence of obesity and diabetes, thereby reducing the breast cancer burden caused by metabolic factors in China.

11.
Front Plant Sci ; 15: 1368284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638348

RESUMO

Promoters are one of the most critical elements in regulating gene expression. They are considered essential biotechnological tools for heterologous protein production. The one most widely used in plants is the 35S promoter from cauliflower mosaic virus. However, our study for the first time discovered the 35S promoter reduced the expression of exogenous proteins under increased antibiotic stress. We discovered an endogenous strong promoter from duckweed named LpSUT2 that keeps higher initiation activity under antibiotic stress. Stable transformation in duckweed showed that the gene expression of eGFP in the LpSUT2:eGFP was 1.76 times that of the 35S:eGFP at 100 mg.L-1 G418 and 6.18 times at 500 mg.L-1 G418. Notably, with the increase of G418 concentration, the gene expression and the fluorescence signal of eGFP in the 35S:eGFP were weakened, while the LpSUT2:eGFP only changed slightly. This is because, under high antibiotic stress, the 35S promoter was methylated, leading to the gene silencing of the eGFP gene. Meanwhile, the LpSUT2 promoter was not methylated and maintained high activity. This is a previously unknown mechanism that provides us with new insights into screening more stable promoters that are less affected by environmental stress. These outcomes suggest that the LpSUT2 promoter has a high capacity to initiate the expression of exogenous proteins. In conclusion, our study provides a promoter tool with potential application for plant genetic engineering and also provides new insights into screening promoters.

12.
Ital J Pediatr ; 50(1): 77, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641843

RESUMO

BACKGROUND: Epilepsy is a chronic neurological disorder that is more likely to be diagnosed in children. The main treatment involves long-term use of anti-epileptic drugs and above all, home care is of great importance. As there has not been a widely accepted home care protocols, simulating a home care environment is necessary for caregivers to develop skills of proper home care. This study aims to evaluate the effectiveness of a simulation training of family management style (STOFMS) for parents of children with epilepsy in China. METHODS: A randomized controlled trial was conducted on 463 children with epilepsy and their families. They were recruited from March 2020 to November 2022 and randomly assigned to the STOFMS group or the conventional group in a 1:1 ratio. Scores of family management measures, 8-item of Morisky Medication Adherence and epilepsy clinical symptom of both groups were collected at three points of time: within 24 h after admission (T0), 3 months after discharge (T1), and 6 months after discharge (T2). Changes due to intervention were compared across groups by repeated-measures ANOVA. The study report followed the CONSORT 2010 checklist. RESULTS: There were statistically significant differences between the two groups at T2. A considerable increase over the baseline was observed in the total management level score and subscale scores in the STOFMS group at T1, compared with essentially no change in the control group. In terms of medication adherence, the STOFMS group performance improved greatly at T1 and T2 compared with the control group. The same result was also found in clinical efficacy at T2 (p < 0.05). CONCLUSION: STOFMS is an effective intervention to improve family management level, treatment adherence and clinical efficacy for children with epilepsy. TRIAL REGISTRATION: The registration number is ChiCTR2200065128. Registered at 18 October 2022, http://www.medresman.org.cn.


Assuntos
Epilepsia , Serviços de Assistência Domiciliar , Treinamento por Simulação , Criança , Humanos , Pais/educação , Epilepsia/terapia , Cuidadores
13.
Chin J Integr Med ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652227

RESUMO

OBJECTIVE: To investigate the mechanism of induction of ferroptosis by brazilin in breast cancer cells. METHODS: Breast cancer 4T1 cells were divided into 6 groups: control, brazilin 1/2 half maximal inhibitory concentration (IC50), IC50, 2×IC50, erastin (10 µg/mL) and capecitabine (10 µg/mL) groups. The effect of brazilin on the proliferation of 4T1 cells was detected by cell counting kit-8 assay, and the treatment dose of brazilin was screened. The effect of brazilin on the mitochondrial morphology of 4T1 cells, and the mitochondrial damage was evaluated under electron microscopy. The levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase 4 (GPX4) were estimated using various detection kits. The invasion and migration abilities of 4T1 cells were detected by scratch assay and transwell assay. The expressions levels of tumor protein p53, solute carrier family 7 member 11 (SLC7A11), GPX4 and acyl-CoA synthetase long-chain family member 4 (ACSL4) proteins were quantified by Western blot assay. RESULTS: Compared to the control group, the 10 (1/2 IC50), 20 (IC50) and 40 (2×IC50) µg/mL brazilin, erastin, and capecitabine groups showed a significant decrease in the cell survival rate, invasion and migration abilities, GSH, SLC7A11 and GPX4 protein expression levels, and mitochondrial volume and ridge (P<0.05), and a significant increase in the mitochondria membrane density, Fe2+, ROS and MDA levels, and p53 and ACSL4 protein expression levels (P<0.05). CONCLUSIONS: Brazilin actuated ferroptosis in breast cancer cells, and the underlying mechanism is mainly associated with the p53/SLC7A11/GPX4 signaling pathway.

14.
World J Surg ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658171

RESUMO

BACKGROUND: There is uncertainty in the relative benefits and harms of hyperthermic intraoperative peritoneal chemotherapy (HIPEC) when added to cytoreductive surgery (CRS) +/- systemic chemotherapy or systemic chemotherapy alone in people with peritoneal metastases from colorectal, gastric, or ovarian cancers. METHODS: We searched randomized controlled trials (RCTs) in the medical literature until April 14, 2022 and applied methods used for high-quality systematic reviews. FINDINGS: We included a total of eight RCTs (seven RCTs included in quantitative analysis as one RCT did not provide data in an analyzable format). All comparisons other than ovarian cancer contained only one trial. For gastric cancer, there is high uncertainty about the effect of CRS + HIPEC + systemic chemotherapy. For stage III or greater epithelial ovarian cancer undergoing interval cytoreductive surgery, CRS + HIPEC + systemic chemotherapy probably decreases all-cause mortality compared to CRS + systemic chemotherapy. For colorectal cancer, CRS + HIPEC + systemic chemotherapy probably results in little to no difference in all-cause mortality and may increase the serious adverse events proportions compared to CRS +/- systemic chemotherapy, but probably decreases all-cause mortality compared to fluorouracil-based systemic chemotherapy alone. INTERPRETATION: The role of CRS + HIPEC in gastric peritoneal metastases is uncertain. CRS + HIPEC should be standard of care in women with stage III or greater epithelial ovarian cancer undergoing interval CRS. CRS + systemic chemotherapy should be standard of care for people with colorectal peritoneal metastases, with HIPEC given only as part of a RCT focusing on subgroups and regimes. PROSPERO REGISTRATION: CRD42019130504.

15.
Int J Epidemiol ; 53(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38632038

RESUMO

BACKGROUND: Patients with type 2 diabetes (T2D) may disproportionately suffer the adverse cardiovascular effects of air pollution, but relevant evidence on microvascular outcome is lacking. We aimed to examine the association between air pollution exposure and the risk of microvascular complications among patients with T2D. METHODS: This prospective study included 17 995 participants with T2D who were free of macro- and micro-vascular complications at baseline from the UK Biobank. Annual average concentrations of particulate matter (PM) with diameters <2.5 µm (PM2.5), <10 µm (PM10), nitrogen dioxide (NO2) and nitrogen oxides (NOx) were assessed using land use regression models. Cox proportional hazards regression was used to estimate the associations of air pollution exposure with incident diabetic microvascular complications. The joint effects of the air pollutant mixture were examined using quantile-based g-computation in a survival setting. RESULTS: In single-pollutant models, the adjusted hazard ratios (95% confidence intervals) for composite diabetic microvascular complications per interquartile range increase in PM2.5, PM10, NO2 and NOx were 1.09 (1.04-1.14), 1.06 (1.01-1.11), 1.07 (1.02-1.12) and 1.04 (1.00-1.08), respectively. Similar significant results were found for diabetic nephropathy and diabetic neuropathy, but not for diabetic retinopathy. The associations of certain air pollutants with composite microvascular complications and diabetic nephropathy were present even at concentrations below the World Health Organization limit values. Multi-pollutant analyses demonstrated that PM2.5 contributed most to the elevated risk associated with the air pollutant mixture. In addition, we found no interactions between air pollution and metabolic risk factor control on the risk of diabetic microvascular complications. CONCLUSIONS: Long-term individual and joint exposure to PM2.5, PM10, NO2 and NOx, even at low levels, was associated with an increased risk of diabetic microvascular complications, with PM2.5 potentially being the main contributor.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Nefropatias Diabéticas , Poluentes Ambientais , Humanos , Estudos Prospectivos , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Nefropatias Diabéticas/induzido quimicamente , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluentes Ambientais/análise , Angiopatias Diabéticas/induzido quimicamente
16.
Front Plant Sci ; 15: 1342359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567131

RESUMO

Introduction: An important strategy to combat yield loss challenge is the development of varieties with increased tolerance to drought to maintain production. Improvement of crop yield under drought stress is critical to global food security. Methods: In this study, we performed multiomics analysis in a collection of 119 diverse rapeseed (Brassica napus L.) varieties to dissect the genetic control of agronomic traits in two watering regimes [well-watered (WW) and drought stress (DS)] for 3 years. In the DS treatment, irrigation continued till the 50% pod development stage, whereas in the WW condition, it was performed throughout the whole growing season. Results: The results of the genome-wide association study (GWAS) using 52,157 single-nucleotide polymorphisms (SNPs) revealed 1,281 SNPs associated with traits. Six stable SNPs showed sequence variation for flowering time between the two irrigation conditions across years. Three novel SNPs on chromosome C04 for plant weight were located within drought tolerance-related gene ABCG16, and their pleiotropically effects on seed weight per plant and seed yield were characterized. We identified the C02 peak as a novel signal for flowering time, harboring 52.77% of the associated SNPs. The 288-kbps LD decay distance analysis revealed 2,232 candidate genes (CGs) associated with traits. The CGs BIG1-D, CAND1, DRG3, PUP10, and PUP21 were involved in phytohormone signaling and pollen development with significant effects on seed number, seed weight, and grain yield in drought conditions. By integrating GWAS and RNA-seq, 215 promising CGs were associated with developmental process, reproductive processes, cell wall organization, and response to stress. GWAS and differentially expressed genes (DEGs) of leaf and seed in the yield contrasting accessions identified BIG1-D, CAND1, and DRG3 genes for yield variation. Discussion: The results of our study provide insights into the genetic control of drought tolerance and the improvement of marker-assisted selection (MAS) for breeding high-yield and drought-tolerant varieties.

18.
Biomater Sci ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683548

RESUMO

Inhalable nanomedicines are increasingly being developed to optimise the pharmaceutical treatment of respiratory diseases. Large lipid-based nanosystems at the forefront of the inhalable nanomedicines development pipeline, though, have a number of limitations. The objective of this study was, therefore, to investigate the utility of novel small lipidated sulfoxide polymers based on poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA) as inhalable drug delivery platforms with tuneable membrane permeability imparted by differential albumin binding kinetics. Linear PMSEA (5 kDa) was used as a hydrophilic polymer backbone with excellent anti-fouling and stealth properties compared to poly(ethylene glycol). Terminal lipids comprising single (1C2, 1C12) or double (2C12) chain diglycerides were installed to provide differing affinities for albumin and, by extension, albumin trafficking pathways in the lungs. Albumin binding kinetics, cytotoxicity, lung mucus penetration and cellular uptake and permeability through key cellular barriers in the lungs were examined in vitro. The polymers showed good mucus penetration and no cytotoxicity over 24 h at up to 1 mg ml-1. While 1C2-showed no interaction with albumin, 1C12-PMSEA and 2C12-PMSEA bound albumin with KD values of approximately 76 and 10 µM, respectively. Despite binding to albumin, 2C12-PMSEA showed reduced cell uptake and membrane permeability compared to the smaller polymers and the presence of albumin had little effect on cell uptake and membrane permeability. While PMSEA strongly shielded these lipids from albumin, the data suggest that there is scope to tune the lipid component of these systems to control membrane permeability and cellular interactions in the lungs to tailor drug disposition in the lungs.

19.
Chin Med J (Engl) ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38595093

RESUMO

ABSTRACT: B7-H3 (CD276), an immune checkpoint protein of the B7 family, exhibits significant upregulation in solid tumors and hematologic malignancies, exerting a crucial role in their pathophysiology. The distinct differential expression of B7-H3 between tumors and normal tissues and its multifaceted involvement in tumor pathogenesis position it as a promising therapeutic target for tumors. In the context of acute myeloid leukemia (AML), B7-H3 is prominently overexpressed and closely associated with unfavorable prognoses, yet it has remained understudied. Despite various ongoing clinical trials demonstrating the potential efficacy of immunotherapies targeting B7-H3, the precise underlying mechanisms responsible for B7-H3-mediated proliferation and immune evasion in AML remain enigmatic. In view of this, we comprehensively outline the current research progress concerning B7-H3 in AML, encompassing in-depth discussions on its structural attributes, receptor interactions, expression profiles, and biological significance in normal tissues and AML. Moreover, we delve into the protumor effects of B7-H3 in AML, examine the intricate mechanisms that underlie its function, and discuss the emerging application of B7-H3-targeted therapy in AML treatment. By juxtaposing B7-H3 with other molecules within the B7 family, this review emphasizes the distinctive advantages of B7-H3, not only as a valuable prognostic biomarker but also as a highly promising immunotherapeutic target in AML.

20.
Int J Biol Macromol ; 267(Pt 2): 131534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636158

RESUMO

We reported here an interesting source of Alpinia zerumbet Polysaccharides (named AZPs) from the residues after extracting essential oil by steam distillation from Alpinia zerumbet fructus. After a series of purifications, a homogeneous polysaccharide (AZP-2) of molecular weight 1.25 × 105 Da was obtained. Structure, anti-inflammatory activity, and anti-inflammatory mechanism were investigated. AZP-2 was mainly composed of galactose, arabinose, xylopyranose, glucose, and galacturonic acid. The main linkage structure of AZP-2 was determined after integrating the nuclear magnetic resonance (NMR) and methylation analysis, and the structure was comparatively complex. The results indicated that AZP-2 significantly decreased the production of NO and ROS in the inflammatory model established by lipopolysaccharide (LPS) stimulated RAW264.7, particularly at the concentration of 200 µg/mL. Furthermore, AZP-2 significantly modulated the secretion of both pro-inflammatory and anti-inflammatory cytokines. Notably, the mechanism of AZP-2 exhibiting inhibitory effects was related to regulating the NF-κB signaling pathway. Overall, AZP-2 could be used as a potential anti-inflammatory agent for further in-depth studies.


Assuntos
Alpinia , Anti-Inflamatórios , Frutas , Polissacarídeos , Alpinia/química , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Células RAW 264.7 , Animais , Frutas/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peso Molecular , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA