Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EMBO Rep ; 24(12): e57925, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37965894

RESUMO

In mammals, the most remarkable T cell variations with aging are the shrinking of the naïve T cell pool and the enlargement of the memory T cell pool, which are partially caused by thymic involution. However, the mechanism underlying the relationship between T-cell changes and aging remains unclear. In this study, we find that T-cell-specific Rip1 KO mice show similar age-related T cell changes and exhibit signs of accelerated aging-like phenotypes, including inflammation, multiple age-related diseases, and a shorter lifespan. Mechanistically, Rip1-deficient T cells undergo excessive apoptosis and promote chronic inflammation. Consistent with this, blocking apoptosis by co-deletion of Fadd in Rip1-deficient T cells significantly rescues lymphopenia, the imbalance between naïve and memory T cells, and aging-like phenotypes, and prolongs life span in T-cell-specific Rip1 KO mice. These results suggest that the reduction and hyperactivation of T cells can have a significant impact on organismal health and lifespan, underscoring the importance of maintaining T cell homeostasis for healthy aging and prevention or treatment of age-related diseases.


Assuntos
Senilidade Prematura , Linfócitos T , Animais , Camundongos , Envelhecimento/genética , Senilidade Prematura/genética , Apoptose , Inflamação , Mamíferos
2.
Materials (Basel) ; 16(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444977

RESUMO

Node thickening is a way to strengthen the nodes of a geogrid. Increasing the node thickness in conventional biaxial geogrids enhances the interface frictional strength parameters and improves its three-dimensional reinforcement effect. Based on the triaxial tests of aeolian sand, single-rib strip tests of geogrids, and pull-out tests of geogrid in aeolian sand, a three-dimensional discrete element pull-out model for geogrids with strengthened nodes was developed to investigate the mechanical performance of an aeolian sand-geogrid interface. The influences of increasing node thickness, the number of strengthened nodes, and the spacing between adjacent nodes on the mechanical performance of the geogrid-soil interface were extensively studied used the proposed model. The results demonstrated that strengthened nodes effectively optimize the reinforcing performance of the geogrid. Among the three node-thickening methods, that in which both the upper and lower sides of nodes are thickened showed the most significant improvement in ultimate pull-out resistance and interface friction angle. Moreover, when using the same node-thickening method, the ultimate pull-out resistance increase shows a linear relationship with the node thickness increase and the strengthened node quantity. In comparison with the conventional geogrid, the strengthened nodes in a geogrid lead to a wider shear band and a stronger ability to restrain soil displacement. When multiple strengthened nodes are simultaneously applied, there is a collective effect that is primarily influenced by the spacing between adjacent nodes. The results provide a valuable reference for optimizing the performance of geogrids and determining the spacing for geogrid installation.

3.
Immunopharmacol Immunotoxicol ; 39(4): 165-172, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28511573

RESUMO

Acute lung injury (ALI) is characterized by dramatic lung inflammation and alveolar epithelial cell death. Although protein kinase R (PKR) (double-stranded RNA-activated serine/threonine kinase) has been implicated in inflammatory response to bacterial cell wall components, whether it plays roles in lipopolysaccharide (LPS)-induced ALI remains unclear. This study was aimed to reveal whether and how PKR was involved in LPS-induced ALI pathology and the potential effects of its specific inhibitor, C16 (C13H8N4OS). During the experiment, mice received C16 (100 or 500 ug/kg) intraperitoneally 1 h before intratracheal LPS instillation. Then, whole lung lavage was collected for analysis of total protein levels and proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and IL-6. The lungs were tested for Western blot, transferase-mediated dUTP nick-end labeling (TUNEL) stain and immunohistochemistry. Results showed that PKR phosphorylation increased significantly after LPS instillation. Furthermore, PKR specific inhibition attenuated LPS-induced lung injury (hematoxylin and eosin stain), reduced lung protein permeability (total protein levels in whole lung lavage) and suppressed proinflammatory cytokines (TNF-α, IL-1ß and IL-6) and lung apoptosis (TUNEL stain and caspase3 activation). Moreover, mechanism-study showed that C16 significantly suppressed I kappa B kinase (IKK)/I kappa B alpha (IκBα)/NF-κB signaling pathway after LPS challenge. These findings suggested that PKR inhibition ameliorated LPS-induced lung inflammation and apoptosis in mice by suppressing NF-κB signaling pathway.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
4.
Med Sci Monit ; 22: 5074-5081, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008894

RESUMO

BACKGROUND Brain injuries induced by hypoxia-ischemia in neonates contribute to increased mortality and lifelong neurological dysfunction. The specific PKR inhibitor C16 has been previously demonstrated to exert a neuroprotective role in adult brain injuries. However, there is no recent study available concerning its protective role in hypoxia-ischemia-induced immature brain damage. Therefore, we investigated whether C16 protects against neonatal hypoxia-ischemia injuries in a neonatal rat model. MATERIAL AND METHODS Postnatal day 7 (P7) rats were used to establish classical hypoxia-ischemia animal models, and C16 postconditioning with 100 ug/kg was performed immediately after hypoxia. Western blot analysis was performed to quantify the phosphorylation of the PKR at 0 h, 3 h, 6 h, 12 h, 24 h, and phosphorylation of NF-κB 24h after hypoxia exposure. The TTC stain for infarction area and TUNEL stain for apoptotic cells were assayed 24 h after the brain hypoxia. Gene expression of IL-1ß, IL-6, and TNF-α was performed at 3 h, 6 h, 12 h, and 24 h. RESULTS The level of PKR autophosphorylation was increased dramatically, especially at 3 h (C16 group vs. HI group, P<0.01). Intraperitoneal C16 administration reduced the infarct volume and apoptosis ratio after this insult (C16 group vs. HI group<0.01), and C16 reduced proinflammatory cytokines mRNA expression, partly through inhibiting NF-κB activation (C16 group vs. HI group<0.05). CONCLUSIONS C16 can protect immature rats against hypoxia-ischemia-induced brain damage by modulating neuroinflammation.


Assuntos
Hipóxia-Isquemia Encefálica/prevenção & controle , Indóis/uso terapêutico , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/uso terapêutico , eIF-2 Quinase/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/patologia , Indóis/administração & dosagem , Indóis/farmacologia , Inflamação/complicações , Inflamação/patologia , Injeções Intraperitoneais , Masculino , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Tiazóis/administração & dosagem , Tiazóis/farmacologia , eIF-2 Quinase/metabolismo
5.
Biomed Res Int ; 2016: 4062579, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597963

RESUMO

Sevoflurane exposures were demonstrated to induce neurotoxicity in the developing brain in both human and animal studies. However, there is no effective approach to reverse it. The present study aimed to evaluate the feasibility of utilizing docosahexaenoic acid (DHA) to prevent sevoflurane-induced neurotoxicity. P6 (postnatal 6 days) mice were administrated DHA after exposure to 3% sevoflurane for two hours daily in three consecutive days. Molecular expressions of synaptic makers (PSD95, synaptophysin) and synaptic morphological changes were investigated by Western blot analysis and transmission electron microscopy, respectively. Meanwhile, Morris water maze test was used to assess spatial memory of mice at P31 (postnatal 31 days). DHA restored sevoflurane-induced decreased level of PSD95 and synaptophysin expressions and increased PSD areas and also improved long-term spatial memory. These results suggest that DHA could rescue synaptogenesis impairment and long-term memory deficits in postnatal caused by multiple sevoflurane exposures.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Memória de Longo Prazo/efeitos dos fármacos , Éteres Metílicos/efeitos adversos , Neurogênese/efeitos dos fármacos , Anestésicos Inalatórios/efeitos adversos , Animais , Animais Recém-Nascidos , Interações Medicamentosas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sevoflurano , Sinapses/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA