Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chin J Integr Med ; 29(12): 1099-1110, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594702

RESUMO

OBJECTIVE: To investigate the involvement of endothelial cells (ECs)-derived exosomes in the anti-apoptotic effect of Danhong Injection (DHI) and the mechanism of DHI-induced exosomal protection against postinfarction myocardial apoptosis. METHODS: A mouse permanent myocardial infarction (MI) model was established, followed by a 14-day daily treatment with DHI, DHI plus GW4869 (an exosomal inhibitor), or saline. Phosphate-buffered saline (PBS)-induced ECs-derived exosomes were isolated, analyzed by miRNA microarray and validated by droplet digital polymerase chain reaction (ddPCR). The exosomes induced by DHI (DHI-exo), PBS (PBS-exo), or DHI+GW4869 (GW-exo) were isolated and injected into the peri-infarct zone following MI. The protective effects of DHI and DHI-exo on MI hearts were measured by echocardiography, Masson's trichrome staining, and TUNEL apoptosis assay. The Western blotting and quantitative reverse transcription PCR (qRT-PCR) were used to evaluate the expression levels of miR-125b/p53-mediated pathway components, including miR-125b, p53, Bak, Bax, and caspase-3 activities. RESULTS: DHI significantly improved cardiac function and reduced infarct size in MI mice (P<0.01), which was abolished by the GW4869 intervention. DHI promoted the exosomal secretion in ECs (P<0.01). According to the results of exosomal miRNA microarray assay, 30 differentially expressed miRNAs in the DHI-exo were identified (28 up-regulated miRNAs and 2 down-regulated miRNAs). Among them, DHI significantly elevated miR-125b level in DHI-exo and DHI-treated ECs, a recognized apoptotic inhibitor impeding p53 signaling (P<0.05). Remarkably, treatment with DHI and DHI-exo attenuated apoptosis, elevated miR-125b expression level, inhibited capsase-3 activity, and down-regulated the expression levels of proapoptotic effectors (p53, Bak, and Bax) in post-MI hearts, whereas these effects were blocked by GW4869 (P<0.05 or P<0.01). CONCLUSION: DHI and DHI-induced exosomes inhibited apoptosis, promoted the miR-125b expression level, and regulated the p53 apoptotic pathway in post-infarction myocardium.


Assuntos
Exossomos , MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , Proteína Supressora de Tumor p53/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Proteína X Associada a bcl-2/metabolismo , Miocárdio/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Apoptose , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Comb Chem High Throughput Screen ; 26(8): 1560-1570, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36321231

RESUMO

OBJECTIVE: To explore the possible mechanism for treating NRR in arrhythmia using network pharmacology and molecular docking in this study. METHODS: Active compounds and targets for NRR were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform, SymMap, and the Encyclopedia of Traditional Chinese Medicine (ETCM) databases. Arrhythmia-related genes were acquired from the Comparative Toxicogenomics Database (CTD) and the GeneCards database. Overlapping targets of NRR associated with arrhythmia were acquired and displayed via a Venn diagram. DAVID was applied for GO and KEGG pathway analyses. Cytoscape software and its plug-in were used for PPI network construction, module division and hub nodes screening. Auto- Dock Vina and qRT-PCR were carried out for validation. RESULTS: In total, 21 active compounds and 57 targets were obtained. Of these, coumarin was the predominant category which contained 15 components and 31 targets. There were 5 key targets for NRR in treating arrhythmia. These targets are involved in the apoptotic process, extrinsic apoptotic signaling pathway in the absence of ligand, and endopeptidase activity involved in the apoptotic process by cytochrome c. The main pathways were the p53 signaling pathway, Hepatitis B and apoptosis. The molecular docking and qRT-PCR displayed good effects on hub node regulation in NRR treatment. CONCLUSION: NRR plays an important role in anti-apoptotic mechanisms that modulate the p53 signaling pathway, which may provide insight for future research and clinical applications focusing on arrhythmia therapy.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53 , Raízes de Plantas , Arritmias Cardíacas/tratamento farmacológico , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Artigo em Inglês | MEDLINE | ID: mdl-35154347

RESUMO

Background: Acute myocardial infarction (AMI) is the leading cause of malignant arrhythmia, heart failure, and sudden death. However, safe and effective drugs for the treatment of AMI are unavailable to date. The present study aimed to investigate the role of traditional Chinese medicine shen-yuan-dan (SYD) in hypoxia-induced cardiomyocyte apoptosis in neonatal rats. In addition, the study explored the possible mechanism through which SYD could reduce myocardial ischemia apoptosis and regulate the expression of the miR-24/Bim pathway. Methods: Hypoxia-induced neonatal rat cardiomyocytes were used for the experiments. These cardiomyocytes were transfected with an miR-24 mimic and an miR-24 inhibitor and then cocultured with SYD-containing serum. MTT and lactate dehydrogenase (LDH) assays, AnnexinV/PI double staining, flow cytometry, and TUNEL staining were used to determine the cell viability and apoptosis under hypoxic conditions. Furthermore, the expression level of Bim in the hypoxia-induced cardiomyocytes was determined through western blotting and quantitative real-time polymerase chain reaction. Results: After 48 h of hypoxia, LDH and creatine phosphokinase (CPK) activities increased, cell viability decreased, and miR-24 expression upregulated in the cardiomyocytes. SYD alleviated hypoxia-induced cardiomyocyte injury, decreased LDH and CPK activities, increased cell viability, and reduced apoptosis in the neonatal rat cardiomyocytes. Moreover, SYD could upregulate miR-24 expression and downregulate Bim expression. Upregulation of miR-24 expression significantly enhanced the effect of SYD, thereby improving myocardial cell apoptosis. Dual-luciferase reporter assay and western blot analysis confirmed that Bim was a direct target of miR-24. Conclusion: SYD treatment reduces hypoxia-induced myocardial apoptosis by upregulating miR-24 expression. This study provides new insights into the molecular mechanism underlying the therapeutic potential of SYD in promoting the recovery of myocardial function and delaying the incidence of heart failure.

4.
Front Pharmacol ; 12: 741261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899296

RESUMO

Objective: To compare the efficacy and safety of conventional treatments (CTs) to those that included traditional Chinese medicine injections (TCMIs) in patients with combined coronary heart disease and heart failure (CHD-HF). Methods: Eight electronic literature databases (PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, China National Knowledge Infrastructure Database, Chinese Scientific Journal Database, Wanfang Database, Chinese Biomedical Database) were searched from their inceptions to May 18, 2021, to identify relevant randomised controlled trials (RCTs). The primary outcomes analyzed included the total effectiveness rate and adverse events (ADRs). The secondary outcomes analyzed included the left ventricular ejection fraction (LVEF), N-terminal pro-brain natriuretic peptide (NT-proBNP), brain natriuretic peptide (BNP), and 6-min walk test (6MWT). Cochrane risk-of-bias tool was used to assess quality of the analyzed RCTs. Stata and OpenBUGS software were used to prior to the systematic review and network meta-analysis. Results: Sixty-one eligible trials involved 5,567 patients and one of the following 15 TCMIs: Shuxuetong, Shenmai, Shenfu, Shengmai, Danshenduofenyansuan, Danhong, Dazhuhongjingtian, Xinmailong, Dengzhanxixin, Gualoupi, Shuxuening, Xuesaitong, Yiqi Fumai, Shenqi Fuzheng, Huangqi. Network meta-analysis revealed that Shuxuetong injection + CT group was superior to CT only in improving the total effectiveness rate [odds ratio (OR): 7.8, 95% confidence interval (CI): 1.17-27.41]. Shenmai injection + CT was superior to CT only for LVEF (OR: 8.97, CI: 4.67-13.18), Xinmailong injection + CT was superior to CT only for NT-proBNP (OR: -317.70, CI: -331.10-303.10), Shenqi Fuzheng injection + CT was superior to CT only for BNP (OR: -257.30, CI: -308.40-242.80); and Danhong injection + CT was superior to CT only for 6MWT (OR: 84.40, CI: 62.62-106.20). Different TCMIs had different toxicity spectrums. Conclusion: TCMIs combined with CT are better than CT alone in treating CHD-HF. Different TCMIs improve different outcomes. Additional properly designed RCTs are needed to conduce a more refined comparison of various TCMIs. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42021258263].

5.
Front Cardiovasc Med ; 8: 726694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004871

RESUMO

Aim: To explore the diverse target distribution and variable mechanisms of different fangjis prescriptions when treating arrhythmias based on the systems pharmacology. Methods: The active ingredients and their corresponding targets were acquired from the three fangjis [Zhigancao Tang (ZT), Guizhigancao Longgumuli Tang (GLT), and Huanglian E'jiao Tang (HET)] and the arrhythmia-related genes were identified based on comprehensive database screening. Networks were constructed between the fangjis and arrhythmia and used to define arrhythmia modules. Common and differential gene targets were identified within the arrhythmia network modules and the cover rate (CR) matrix was applied to compare the contributions of the fangjis to the network and modules. Comparative pharmacogenetics analyses were then conducted to define the arrhythmia-related signaling pathways regulated by the fangjis prescriptions. Finally, the divergence and convergence points of the arrhythmia pathways were deciphered based on databases and the published literature. Results: A total of 187, 105, and 68 active ingredients and 1,139, 1,195, and 811 corresponding gene targets of the three fangjis were obtained and 102 arrhythmia-related genes were acquired. An arrhythmia network was constructed and subdivided into 4 modules. For the target distribution analysis, 65.4% of genes were regulated by the three fangjis within the arrhythmia network. ZT and GLT were more similar to each other, mainly regulated by module two, whereas HET was divided among all the modules. From the perspective of signal transduction, calcium-related pathways [calcium, cyclic guanosine 3',5'-monophosphate (cGMP)-PKG, and cyclic adenosine 3',5'-monophosphate (cAMP)] and endocrine system-related pathways (oxytocin signaling pathway and renin secretion pathways) were associated with all the three fangjis prescriptions. Nevertheless, heterogeneity existed between the biological processes and pathway distribution among the three prescriptions. GLT and HET were particularly inclined toward the conditions involving abnormal hormone secretion, whereas ZT tended toward renin-angiotensin-aldosterone system (RAAS) disorders. However, calcium signaling-related pathways prominently feature in the pharmacological activities of the decoctions. Experimental validation indicated that ZT, GLT, and HET significantly shortened the duration of ventricular arrhythmia (VA) and downregulated the expression of CALM2 and interleukin-6 (IL-6) messenger RNAs (mRNAs); GLT and HET downregulated the expression of CALM1 and NOS3 mRNAs; HET downregulated the expression of CRP mRNA. Conclusion: Comparing the various distributions of the three fangjis, pathways provide evidence with respect to precise applications toward individualized arrhythmia treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA