Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Adv Sci (Weinh) ; : e2310282, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308190

RESUMO

Heterotopic ossification (HO), often arising in response to traumatic challenges, results from the aberrant osteochondral differentiation of mesenchymal stem cells (MSCs). Nevertheless, the impact of trauma-induced inflammatory exposure on MSC fate determination remains ambiguous. In this study, the cellular diversity within inflammatory lesions is elucidated, comprising MSCs and several innate and adaptive immune cells. It is observed that quiescent MSCs transition into cycling MSCs, subsequently giving rise to chondrogenic (cMSC) and/or osteogenic (oMSC) lineages within the inflammatory microenvironment following muscle or tendon injuries, as revealed through single-cell RNA sequencing (scRNA-seq), spatial transcriptome and lineage tracing analysis. Moreover, these investigations demonstrate that neutrophils and natural killer (NK) cells enhance transition of quiescent MSCs into cycling MSCs, which is also controlled by M1 macrophages, a subpopulation of macrophages can also stimulate cMSC and oMSC production from cycling MSCs. Additionally, M2 macrophages, CD4+ and CD8+ T lymphocytes are found to promote chondrogenesis. Further analysis demonstrates that immune cells promotes the activation of signaling transducers and activators of transcription (STAT) pathway and phosphoinositide 3 (PI3K)/protein kinase B (AKT) pathway in MSC proliferation and osteochondral progenitors' production, respectively. These findings highlight the dynamics of MSC fate within the inflammatory lesion and unveil the molecular landscape of osteoimmunological interactions, which holds promise for advancing HO treatment.

2.
Cell Death Differ ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164456

RESUMO

The existence of heterogeneity has plunged cancer treatment into a challenging dilemma. We profiled malignant epithelial cells from 5 gastric adenocarcinoma patients through single-cell sequencing (scRNA-seq) analysis, demonstrating the heterogeneity of gastric adenocarcinoma (GA), and identified the CCKBR+ stem cell-like cancer cells associated poorly differentiated and worse prognosis. We further conducted targeted analysis using single-cell transcriptome libraries, including 40 samples, to confirm these screening results. In addition, we revealed that FOXOs are involved in the progression and development of CCKBR+ gastric adenocarcinoma. Inhibited the expression of FOXOs and disrupting cancer cell stemness reduce the CCKBR+ GA organoid formation and impede tumor progression. Mechanically, CUT&Tag sequencing and Lectin pulldown revealed that FOXOs can activate ST3GAL3/4/5 as well as ST6GALNAC6, promoting elevated sialyation levels in CCKBR+ tumor cells. This FOXO-sialyltransferase axis contributes to the maintenance of homeostasis and the growth of CCKBR+ tumor cells. This insight provides novel perspectives for developing targeted therapeutic strategies aimed at the treating CCKBR associated gastric cancer.

3.
Res Sq ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39149498

RESUMO

Juvenile myelomonocytic leukemia (JMML), a clonal hematologic malignancy, originates from mutated hematopoietic stem cells (HSCs). The mechanism sustaining the persistence of mutant stem cells, leading to leukemia development, remains elusive. In this study, we conducted comprehensive examination of gene expression profiles, transcriptional factor regulons, and cell compositions/interactions throughout various stages of tumor cell development in Ptpn11 mutation-associated JMML. Our analyses revealed that leukemia-initiating Ptpn11 E76K/+ mutant stem cells exhibited de novo activation of the myeloid transcriptional program and aberrant developmental trajectories. These mutant stem cells displayed significantly elevated expression of innate immunity-associated anti-microbial peptides and pro-inflammatory proteins, particularly S100a9 and S100a8. Biological experiments confirmed that S100a9/S100a8 conferred a selective advantage to the leukemia-initiating cells through autocrine effects and facilitated immune evasion by recruiting and promoting immune suppressive myeloid-derived suppressor cells (MDSCs) in the microenvironment. Importantly, pharmacological inhibition of S100a9/S100a8 signaling effectively impeded leukemia development from Ptpn11 E76K/+ mutant stem cells. These findings collectively suggest that JMML tumor-initiating cells exploit evolutionarily conserved innate immune and inflammatory mechanisms to establish clonal dominance.

4.
JCI Insight ; 9(8)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451719

RESUMO

Mesenchymal stem cells (MSCs), suffering from diverse gene hits, undergo malignant transformation and aberrant osteochondral differentiation. Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), a nonreceptor protein tyrosine phosphatase, regulates multicellular differentiation, proliferation, and transformation. However, the role of SHP2 in MSC fate determination remains unclear. Here, we showed that MSCs bearing the activating SHP2E76K mutation underwent malignant transformation into sarcoma stem-like cells. We revealed that the SHP2E76K mutation in mouse MSCs led to hyperactive mitochondrial metabolism by activating mitochondrial complexes I and III. Inhibition of complexes I and III prevented hyperactive mitochondrial metabolism and malignant transformation of SHP2E76K MSCs. Mechanistically, we verified that SHP2 underwent liquid-liquid phase separation (LLPS) in SHP2E76K MSCs. SHP2 LLPS led to its dissociation from complexes I and III, causing their hyperactivation. Blockade of SHP2 LLPS by LLPS-defective mutations or allosteric inhibitors suppressed complex I and III hyperactivation as well as malignant transformation of SHP2E76K MSCs. These findings reveal that complex I and III hyperactivation driven by SHP2 LLPS promotes malignant transformation of SHP2E76K MSCs and suggest that inhibition of SHP2 LLPS could be a potential therapeutic target for the treatment of activated SHP2-associated cancers.


Assuntos
Transformação Celular Neoplásica , Células-Tronco Mesenquimais , Mitocôndrias , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Células-Tronco Mesenquimais/metabolismo , Animais , Camundongos , Mitocôndrias/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Mutação , Diferenciação Celular , Separação de Fases
5.
Stem Cell Rev Rep ; 19(7): 2109-2119, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37351833

RESUMO

Current understanding of the leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in intestinal stem cells (ISCs) is well established, however, the implications of ISC heterogeneity and homeostasis are poorly understood. Prior studies have provided important evidence for the association between heterogeneity of ISC pools with pathogenesis and therapeutic response of malignant disease. Leveraging the advantages of organoids and single cell RNA sequencing (scRNA-seq), glandular development has been simulated and cell heterogeneity has been clarified. Based on this research, several potential ISCs were identified, such as LGR5 + p27 + quiescent ISCs, LGR5 + Mex3a + slowly proliferating stem cells, and CLU + reverse stem cells. We also illustrated major factors responsible for ISC homeostasis including metabolism-related (LKB1, TGR5, HMGCS2), inflammation-related (IFB-b, IFN2, TNF), and Wnt signaling-related (CREPT, Mex3a, MTG16) factors. ISCs play complex roles in intestinal tumorigenesis, chemoresistance and occasional relapse of colon cancer, which bear discussion. In this review, we focus on novel technical challenges in ISCs fate drawing upon recent research with the goals of clarifying our understanding of complex ISCs, elucidating the integrated intestinal crypt niche, and creating new opportunities for therapeutic development.

6.
Am J Transl Res ; 14(7): 4591-4605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958497

RESUMO

OBJECTIVE: To explore the synergistic effect and metabolic mechanism of chronic arsenic exposure and PTPN11 gain-of-function mutation on tumorigenesis. METHODS: Arsenic-transformed Ptpn11+/+ (WT-As) and Ptpn11D61G/+ -mutant (D61G-As) mouse embryonic fibroblasts (MEFs) were established by chronic treatment of low-dose arsenic. We used cell counting, plate colony and soft agar colony formation, and a nude mouse xenograft model to detect malignant transformation and tumorigenesis in vitro and in vivo. To detect mitochondrial oxidative phosphorylation (OXPHOS), we used Seahorse real-time cell metabolic analysis as well as adenosine triphosphate (ATP) and ROS production assays. Lastly, we examined mTOR signaling pathway changes by western blotting. RESULTS: Low-dose arsenic exposure promoted WT MEFs proliferation and exacerbated malignancy driven by Ptpn11D61G/+ mutation. Additionally, Ptpn11D61G/+ -mutant MEFs exhibited increased mitochondrial metabolism and low-dose arsenic amplified this malignant metabolic activity. Mechanistically, the mTOR signaling pathway was activated in Ptpn11D61G/+ -mutant MEFs and was further phosphorylated in arsenic-treated MEFs expressing Ptpn11D61G/+ . Critically, tumorigenesis induced by the synergistic effect of low-dose arsenic and Ptpn11D61G/+ mutation was prevented by mTOR pathway inhibition via rapamycin. CONCLUSION: This study found that metabolic reprogramming, particularly mitochondrial hyperactivation, is a core mechanism underlying tumorigenesis induced by the synergistic effect of Ptpn11D61G/+ mutation and arsenic exposure. Furthermore, these findings suggested mTOR is a therapeutic target for Ptpn11-associated cancers.

7.
Front Cell Dev Biol ; 10: 857045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756991

RESUMO

Bone marrow microenvironment (BMM) has been proven to have benefits for both normal hematopoietic stem cell niche and pathological leukemic stem cell niche. In fact, the pathological leukemia microenvironment reprograms bone marrow niche cells, especially mesenchymal stem cells for leukemia progression, chemoresistance and relapse. The growth and differentiation of MSCs are modulated by leukemia stem cells. Moreover, chromatin abnormality of mesenchymal stem cells is sufficient for leukemia initiation. Here, we summarize the detailed relationship between MSC and leukemia. MSCs can actively and passively regulate the progression of myelogenous leukemia through cell-to-cell contact, cytokine-receptor interaction, and exosome communication. These behaviors benefit LSCs proliferation and survival and inhibit physiological hematopoiesis. Finally, we describe the recent advances in therapy targeting MSC hoping to provide new perspectives and therapeutic strategies for leukemia.

8.
Front Immunol ; 13: 868813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514975

RESUMO

Breast cancer development and progression rely not only on the proliferation of neoplastic cells but also on the significant heterogeneity in the surrounding tumor microenvironment. Its unique microenvironment, including tumor-infiltrating lymphocytes, complex myeloid cells, lipid-associated macrophages, cancer-associated fibroblasts (CAFs), and other molecules that promote the growth and migration of tumor cells, has been shown to play a crucial role in the occurrence, growth, and metastasis of breast cancer. However, a detailed understanding of the complex microenvironment in breast cancer remains largely unknown. The unique pattern of breast cancer microenvironment cells has been poorly studied, and neither has the supportive role of these cells in pathogenesis been assessed. Single-cell multiomics biotechnology, especially single-cell RNA sequencing (scRNA-seq) reveals single-cell expression levels at much higher resolution, finely dissecting the molecular characteristics of tumor microenvironment. Here, we review the recent literature on breast cancer microenvironment, focusing on scRNA-seq studies and analyzing heterogeneity and spatial location of different cells, including T and B cells, macrophages/monocytes, neutrophils, and stromal cells. This review aims to provide a more comprehensive perception of breast cancer microenvironment and annotation for their clinical classification, diagnosis, and treatment. Furthermore, we discuss the impact of novel single-cell omics technologies, such as abundant omics exploration strategies, multiomics conjoint analysis mode, and deep learning network architecture, on the future research of breast cancer immune microenvironment.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Feminino , Humanos , Linfócitos do Interstício Tumoral , Análise de Célula Única , Microambiente Tumoral
9.
Front Pharmacol ; 13: 856777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559258

RESUMO

Lysyl hydroxylase-2 (LH2) involves in the hydroxylation of telopeptide lysine residues during collagen deposition. Recent studies indicate that interleukin (IL)-6 generated by the chronic inflammation disease may trigger the LH2 expression to accelerate cell motility. Berberine is the alkaloid derived from the traditional Chinese medicine Coptis chinensis, which displays potential anti-inflammatory activity in multiple diseases. The anti-inflammatory activity of berberine has been confirmed by reducing proinflammatory cytokines such as IL-6, IL-8, and IFN-γ. However, whether and how berberine inhibits cellular motility against metastatic spread in triple-negative breast cancer (TNBC) has not been demonstrated, and the underlying mechanism remains unclear. We investigated the effects of berberine on the inflammatory cytokine secretion, cell proliferation, and migration in vitro and further explored the effect of berberine on growth and metastasis in vivo. Berberine restrained TNBC cell proliferation, motility, and glycolysis process in a dose-dependent way. The secretion of IL-6 was abrogated by berberine in TNBC cells, and IL-6-stimulated cell migration was inhibited by berberine. Mechanistically, berberine remarkably suppressed LH2 expression at both mRNA and protein levels. LH2 depletion led to decreasing the antimotility effect of berberine, and this phenomenon was related to the suppressed glycolysis after LH2 inhibition. Conversely, ectopic restoration of LH2 could further increase the antimotility effect of berberine. Moreover, berberine was confirmed to inhibit cell growth and motility in vivo, and the expression of LH2 and glycolytic enzymes was also blocked by berberine in vivo. Collectively, this study indicated that berberine could be a promising therapeutic drug via regulating LH2 for TNBC.

10.
Front Immunol ; 11: 565165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101283

RESUMO

The interaction between cancer cells and immune cells is important for the cancer development. However, much attention has been given to T cells and macrophages. Being the most abundant leukocytes in the blood, the functions of neutrophils in cancer have been underdetermined. They have long been considered an "audience" in the development of cancer. However, emerging evidence indicate that neutrophils are a heterogeneous population with plasticity, and subpopulation of neutrophils (such as low density neutrophils, polymorphonuclear-myeloid-derived suppressor cells) are actively involved in cancer growth and metastasis. Here, we review the current understanding of the role of neutrophils in cancer development, with a specific focus on their pro-metastatic functions. We also discuss the potential and challenges of neutrophils as therapeutic targets. A better understanding the role of neutrophils in cancer will discover new mechanisms of metastasis and develop new immunotherapies by targeting neutrophils.


Assuntos
Progressão da Doença , Neoplasias/imunologia , Neoplasias/patologia , Neutrófilos/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Tolerância Imunológica , Imunoterapia/métodos , Inflamação/imunologia , Ativação Linfocitária , Macrófagos/imunologia , Metástase Neoplásica , Neoplasias/terapia , Células Neoplásicas Circulantes/imunologia , Linfócitos T/imunologia
11.
Stem Cell Res Ther ; 10(1): 14, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635039

RESUMO

BACKGROUND: Heterotopic ossification (HO), either acquired (aHO) or hereditary, such as fibrodysplasia ossificans progressiva (FOP), is a serious condition without effective treatment. Understanding of the core process of injury-induced HO is still severely limited. METHODS: Double-pulse thymidine analog labeling was used to explore the distinctive domains evolved in injury-induced lesions in an animal model of HO (Nse-BMP4). Histological studies were performed to see whether a similar zonal pattern is also consistently found in biopsies from patients with aHO and FOP. In vivo clonal analysis with Rainbow mice, genetic loss-of-function studies with diphtheria toxin A (DTA)-mediated depletion and lineage tracing with Zsgreen reporter mice were used to obtain further evidence that Tie2-cre-, Gli1-creERT-, and Glast-creERT-labeled cells contribute to HO as niche-dwelling progenitor/stem cells. Immunohistochemistry was used to test whether vasculature, neurites, macrophages, and mast cells are closely associated with the proposed niche and thus are possible candidate niche supportive cells. Similar methods also were employed to further understand the signaling pathways that regulate the niche and the resultant HO. RESULTS: We found that distinctive domains evolved in injury-induced lesions, including, from outside-in, a mesenchymal stem cell (MSC) niche, a transient domain and an inner differentiated core in an animal model of HO (Nse-BMP4). A similar zonal structure was found in patients with aHO and FOP. In vivo clonal analysis with Rainbow mice and genetic loss-of-function studies with DTA provided evidence that Tie2-cre-, Gli1-creERT-, and Glast-creERT-labeled cells contribute to HO as niche-dwelling progenitor/stem cells; consistently, vasculature, neurites, macrophages, and mast cells are closely associated with the proposed niche and thus are possible candidate niche supportive cells. Further mechanistic study found that BMP and hedgehog (Hh) signaling co-regulate the niche and the resultant HO. CONCLUSIONS: Available data provide evidence of a potential core mechanism in which multiple disease-specific cellular and extracellular molecular elements form a unique local microenvironment, i.e., an injury-induced stem cell niche, which regulates the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs). The implication for HO is that therapeutic approaches must consider several different disease specific factors as parts of a functional unit, instead of treating one factor at a time.


Assuntos
Miosite Ossificante/genética , Ossificação Heterotópica/genética , Osteogênese/genética , Nicho de Células-Tronco/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Toxina Diftérica/genética , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/genética , Humanos , Mutação com Perda de Função/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Miosite Ossificante/patologia , Miosite Ossificante/terapia , Ossificação Heterotópica/patologia , Ossificação Heterotópica/terapia , Fragmentos de Peptídeos/genética , Receptor TIE-2/genética , Transdução de Sinais/genética , Proteína GLI1 em Dedos de Zinco/genética
12.
Histol Histopathol ; 34(4): 303-312, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30422303

RESUMO

Wnt signaling, canonical or non-canonical, plays conserved roles in numerous physiological and pathological processes. However, it is well beyond the scope of this review to cover all functional aspects of Wnt signaling in different contexts at reasonable depth; therefore this review intends to cover only the roles of Wnt signaling in bone biology; more specifically, we intend to first update the roles of Wnt signaling in physiological bone process, including in osteogenesis and chondrogenesis, since recent years have witnessed tremendous progressions in this area, and then we seek to extend our understanding to the pathological bone process, especially to the heterotopic ossification (HO), even though the understanding of Wnt signaling in HO has been limited. We then further clarify the potential crosstalking between Wnt and other conserved signaling pathways, including FGF, GPCR and Hif1α pathways. Overall, our goal is to update the progressions, identify the general theme and the knowledge gaps and discuss the potential promising avenue for future applications in HO prevention and treatment.


Assuntos
Condrogênese/fisiologia , Ossificação Heterotópica/metabolismo , Osteogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA