Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anesth Analg ; 139(5): 944-954, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38874997

RESUMO

BACKGROUND: Anesthesiology departments and professional organizations increasingly recognize the need to embrace diverse membership to effectively care for patients, to educate our trainees, and to contribute to innovative research. 1 Bibliometric analysis uses citation data to determine the patterns of interrelatedness within a scientific community. Social network analysis examines these patterns to elucidate the network's functional properties. Using these methodologies, an analysis of contemporary scholarly work was undertaken to outline network structure and function, with particular focus on the equity of node and graph-level connectivity patterns. METHODS: Using the Web of Science, this study examines bibliographic data from 6 anesthesiology-specific journals between January 1, 2017, and August 26, 2022. The final data represent 4453 articles, 19,916 independent authors, and 4436 institutions. Analysis of coauthorship was performed using R libraries software. Collaboration patterns were assessed at the node and graph level to analyze patterns of coauthorship. Influential authors and institutions were identified using centrality metrics; author influence was also cataloged by the number of publications and highly cited papers. Independent assessors reviewed influential author photographs to classify race and gender. The Gini coefficient was applied to examine dispersion of influence across nodes. Pearson correlations were used to investigate the relationship between centrality metrics, number of publications, and National Institutes of Health (NIH) funding. RESULTS: The modularity of the author network is significantly higher than would be predicted by chance (0.886 vs random network mean 0.340, P < .01), signifying strong community formation. The Gini coefficient indicates inequity across both author and institution centrality metrics, representing moderate to high disparity in node influence. Identifying the top 30 authors by centrality metrics, number of published and highly cited papers, 79.0% were categorized as male; 68.1% of authors were classified as White (non-Latino) and 24.6% Asian. CONCLUSIONS: The highly modular network structure indicates dense author communities. Extracommunity cooperation is limited, previously demonstrated to negatively impact novel scientific work. 2 , 3 Inequitable node influence is seen at both author and institution level, notably an imbalance of information transfer and disparity in connectivity patterns. There is an association between network influence, article publication (authors), and NIH funding (institutions). Female and minority authors are inequitably represented among the most influential authors. This baseline bibliometric analysis provides an opportunity to direct future network connections to more inclusively share information and integrate diverse perspectives, properties associated with increased academic productivity. 3 , 4.


Assuntos
Anestesiologia , Autoria , Bibliometria , Humanos , Feminino , Masculino , Publicações Periódicas como Assunto/estatística & dados numéricos , Análise de Rede Social , Editoração/estatística & dados numéricos , Pesquisa Biomédica
2.
Front Neurosci ; 15: 650082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815050

RESUMO

The human brain grows the most dramatically during the perinatal and early post-natal periods, during which pre-term birth or perinatal injury that may alter brain structure and lead to developmental anomalies. Thus, characterizing cortical thickness of developing brains remains an important goal. However, this task is often complicated by inaccurate cortical surface extraction due to small-size brains. Here, we propose a novel complex framework for the reconstruction of neonatal WM and pial surfaces, accounting for large partial volumes due to small-size brains. The proposed approach relies only on T1-weighted images unlike previous T2-weighted image-based approaches while only T1-weighted images are sometimes available under the different clinical/research setting. Deep neural networks are first introduced to the neonatal magnetic resonance imaging (MRI) pipeline to address the mis-segmentation of brain tissues. Furthermore, this pipeline enhances cortical boundary delineation using combined models of the cerebrospinal fluid (CSF)/GM boundary detection with edge gradient information and a new skeletonization of sulcal folding where no CSF voxels are seen due to the limited resolution. We also proposed a systematic evaluation using three independent datasets comprising 736 pre-term and 97 term neonates. Qualitative assessment for reconstructed cortical surfaces shows that 86.9% are rated as accurate across the three site datasets. In addition, our landmark-based evaluation shows that the mean displacement of the cortical surfaces from the true boundaries was less than a voxel size (0.532 ± 0.035 mm). Evaluating the proposed pipeline (namely NEOCIVET 2.0) shows the robustness and reproducibility across different sites and different age-groups. The mean cortical thickness measured positively correlated with post-menstrual age (PMA) at scan (p < 0.0001); Cingulate cortical areas grew the most rapidly whereas the inferior temporal cortex grew the least rapidly. The range of the cortical thickness measured was biologically congruent (1.3 mm at 28 weeks of PMA to 1.8 mm at term equivalent). Cortical thickness measured on T1 MRI using NEOCIVET 2.0 was compared with that on T2 using the established dHCP pipeline. It was difficult to conclude that either T1 or T2 imaging is more ideal to construct cortical surfaces. NEOCIVET 2.0 has been open to the public through CBRAIN (https://mcin-cnim.ca/technology/cbrain/), a web-based platform for processing brain imaging data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA