Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20956, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065968

RESUMO

The mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that forms the two different protein complexes, known as mTORC1 and mTORC2. mTOR signaling is activated in a variety of tumors, including glioma that is one of the malignant brain tumors. FilGAP (ARHGAP24) is a negative regulator of Rac, a member of Rho family small GTPases. In this study, we found that FilGAP interacts with mTORC1/2 and is involved in tumor formation in glioma. FilGAP interacted with mTORC1 via Raptor and with mTORC2 via Rictor and Sin1. Depletion of FilGAP in KINGS-1 glioma cells decreased phosphorylation of S6K and AKT. Furthermore, overexpression of FilGAP increased phosphorylation of S6K and AKT, suggesting that FilGAP activates mTORC1/2. U-87MG, glioblastoma cells, showed higher mTOR activity than KINGS-1, and phosphorylation of S6K and AKT was not affected by suppression of FilGAP expression. However, in the presence of PI3K inhibitors, phosphorylation of S6K and AKT was also decreased in U-87MG by depletion of FilGAP, suggesting that FilGAP may also regulate mTORC2 in U-87MG. Finally, we showed that depletion of FilGAP in KINGS-1 and U-87MG cells significantly reduced spheroid growth. These results suggest that FilGAP may contribute to tumor growth in glioma by regulating mTORC1/2 activities.


Assuntos
Proteínas Ativadoras de GTPase , Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Glioma/metabolismo , Glioma/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
2.
Langmuir ; 23(24): 12042-7, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17963408

RESUMO

Surface-enhanced Raman scattering (SERS) integrates high levels of sensitivity with spectroscopic precision and has tremendous potential for chemical and biomolecular sensing. The key to the wider application of Raman spectroscopy using roughened metallic surfaces is the development of highly enhancing substrates for analytical purposes. Here, we demonstrate a simple strategy for self-assembling silver nanochains on glass substrates for sensitive SERS substrates. The chain length of short Ag nanochains can be controlled by adjusting the concentration of cetyltrimethylammonium bromide (CTAB) and 11-mercaptoundecanoic acid (MUA). CTAB with appropriate concentration serves as the "glue" that can link the {100} facets of two neighboring Ag nanoparticles. MUA is found to be effective in "freezing up" the aggregation of Ag short chains and preventing them from further aggregating into a long chainlike network structure. The surface plasmon bands can be tuned over an extended wavelength range by controlling the length of the nanochains. The Ag monolayer, mainly composed of four-particle nanochains, exhibited the maximum SERS enhancement factor of around 2.6 x 108, indicating that a stronger SERS enhancement can be obtained in these interstitial sites of chainlike aggregated Ag nanoparticles.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Nanoestruturas/química , Prata/química , Análise Espectral Raman/métodos , Cetrimônio , Compostos de Cetrimônio/química , Ácidos Graxos/química , Vidro/química , Espalhamento de Radiação , Compostos de Sulfidrila/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA