Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36766587

RESUMO

The biopsy is a gold standard method for tumor grading. However, due to its invasive nature, it has sometimes proved fatal for brain tumor patients. As a result, a non-invasive computer-aided diagnosis (CAD) tool is required. Recently, many magnetic resonance imaging (MRI)-based CAD tools have been proposed for brain tumor grading. The MRI has several sequences, which can express tumor structure in different ways. However, a suitable MRI sequence for brain tumor classification is not yet known. The most common brain tumor is 'glioma', which is the most fatal form. Therefore, in the proposed study, to maximize the classification ability between low-grade versus high-grade glioma, three datasets were designed comprising three MRI sequences: T1-Weighted (T1W), T2-weighted (T2W), and fluid-attenuated inversion recovery (FLAIR). Further, five well-established convolutional neural networks, AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 were adopted for tumor classification. An ensemble algorithm was proposed using the majority vote of above five deep learning (DL) models to produce more consistent and improved results than any individual model. Five-fold cross validation (K5-CV) protocol was adopted for training and testing. For the proposed ensembled classifier with K5-CV, the highest test accuracies of 98.88 ± 0.63%, 97.98 ± 0.86%, and 94.75 ± 0.61% were achieved for FLAIR, T2W, and T1W-MRI data, respectively. FLAIR-MRI data was found to be most significant for brain tumor classification, where it showed a 4.17% and 0.91% improvement in accuracy against the T1W-MRI and T2W-MRI sequence data, respectively. The proposed ensembled algorithm (MajVot) showed significant improvements in the average accuracy of three datasets of 3.60%, 2.84%, 1.64%, 4.27%, and 1.14%, respectively, against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50.

2.
Comput Biol Med ; 135: 104564, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34217980

RESUMO

BACKGROUND: Although biopsy is the gold standard for tumour grading, being invasive, this procedure also proves fatal to the brain. Thus, non-invasive methods for brain tumour grading are urgently needed. Here, a magnetic resonance imaging (MRI)-based non-invasive brain tumour grading method has been proposed using deep learning (DL) and machine learning (ML) techniques. METHOD: Four clinically applicable datasets were designed. The four datasets were trained and tested on five DL-based models (convolutional neural networks), AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50, and five ML-based models, Support Vector Machine, K-Nearest Neighbours, Naïve Bayes, Decision Tree, and Linear Discrimination using five-fold cross-validation. A majority voting (MajVot)-based ensemble algorithm has been proposed to optimise the overall classification performance of five DL and five ML-based models. RESULTS: The average accuracy improvement of four datasets using the DL-based MajVot algorithm against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 models was 2.02%, 1.11%, 1.04%, 2.67%, and 1.65%, respectively. Further, a 10.12% improvement was seen in the average accuracy of four datasets using the DL method against ML. Furthermore, the proposed DL-based MajVot algorithm was validated on synthetic face data and improved the male versus female face image classification accuracy by 2.88%, 0.71%, 1.90%, 2.24%, and 0.35% against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50, respectively. CONCLUSION: The proposed MajVot algorithm achieved promising results for brain tumour classification and is able to utilise the combined potential of multiple models.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Algoritmos , Teorema de Bayes , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Humanos , Masculino
3.
Comput Biol Med ; 130: 104210, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33550068

RESUMO

COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have primarily been targeted are at the highest risk from SARS-CoV-2. Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer-aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast and successful, and timely lung scans analysis. This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based on segregation of techniques and their characteristics. The study also discusses the identification of AI models and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, clinical AI design considerations will be discussed. We conclude that the design of the current existing AI models can be improved by considering comorbidity as an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings.


Assuntos
Inteligência Artificial , COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , SARS-CoV-2 , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Humanos
4.
Comput Biol Med ; 122: 103804, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658726

RESUMO

MOTIVATION: Brain or central nervous system cancer is the tenth leading cause of death in men and women. Even though brain tumour is not considered as the primary cause of mortality worldwide, 40% of other types of cancer (such as lung or breast cancers) are transformed into brain tumours due to metastasis. Although the biopsy is considered as the gold standard for cancer diagnosis, it poses several challenges such as low sensitivity/specificity, risk during the biopsy procedure, and relatively long waiting times for the biopsy results. Due to an increase in the sheer volume of patients with brain tumours, there is a need for a non-invasive, automatic computer-aided diagnosis tool that can automatically diagnose and estimate the grade of a tumour accurately within a few seconds. METHOD: Five clinically relevant multiclass datasets (two-, three-, four-, five-, and six-class) were designed. A transfer-learning-based Artificial Intelligence paradigm using a Convolutional Neural Network (CCN) was proposed and led to higher performance in brain tumour grading/classification using magnetic resonance imaging (MRI) data. We benchmarked the transfer-learning-based CNN model against six different machine learning (ML) classification methods, namely Decision Tree, Linear Discrimination, Naive Bayes, Support Vector Machine, K-nearest neighbour, and Ensemble. RESULTS: The CNN-based deep learning (DL) model outperforms the six types of ML models when considering five types of multiclass tumour datasets. These five types of data are two-, three-, four-, five, and six-class. The CNN-based AlexNet transfer learning system yielded mean accuracies derived from three kinds of cross-validation protocols (K2, K5, and K10) of 100, 95.97, 96.65, 87.14, and 93.74%, respectively. The mean areas under the curve of DL and ML were found to be 0.99 and 0.87, respectively, for p < 0.0001, and DL showed a 12.12% improvement over ML. Multiclass datasets were benchmarked against the TT protocol (where training and testing samples are the same). The optimal model was validated using a statistical method of a tumour separation index and verified on synthetic data consisting of eight classes. CONCLUSION: The transfer-learning-based AI system is useful in multiclass brain tumour grading and shows better performance than ML systems.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Inteligência Artificial , Teorema de Bayes , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA