Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Eur J Pharmacol ; 984: 177019, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343081

RESUMO

Pyroptosis has been found to contribute to myocardial ischemia/reperfusion (I/R) injury, but the exact mechanisms that initiate myocardial pyroptosis are not fully elucidated. Sonic hedgehog (SHH) signaling is activated in heart suffered I/R, and intervention of SHH signaling has been demonstrated to protect heart from I/R injury. Caspase recruitment domain-containing protein 10 (CARD10)-B cell lymphoma 10 (BCL10)-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) (CBM) complex could transduce signals from the membrane and induce inflammatory pathways in non-hematopoietic cells, which could be a downstream effector of SHH signaling pathway. This study aims to explore the role of SHH signaling in I/R-induced myocardial pyroptosis and its relationship with the CBM complex. C57BL/6J mice were subjected to 45 min-ischemia followed by 24 h-reperfusion to establish a myocardial I/R model, and H9c2 cells underwent hypoxia/reoxygenation (H/R) to mimic myocardial I/R model in vitro. Firstly, SHH signaling was significantly activated in heart suffered I/R in an autocrine- or paracrine-dependent manner via its receptor PTCH1, and inhibition of SHH signaling decreased myocardial injury via reducing caspase-11-dependent pyroptosis, concomitant with attenuating CBM complex formation. Secondly, suppression of SHH signaling decreased protein kinase C α (PKCα) level, but inhibition of PKCα attenuated CBM complex formation without impacting the protein levels of SHH and PTCH1. Finally, disruption of the CBM complex prevented MALT1 from recruiting of TRAF6, which was believed to trigger the caspase-11-dependent pyroptosis. Based on these results, we conclude that inhibition of SHH signaling suppresses pyroptosis via attenuating PKCα-mediated CARD10-BCL10-MALT1 complex formation in mouse heart suffered I/R.

2.
Inorg Chem ; 63(38): 17714-17726, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39233664

RESUMO

Ion preintercalation is an effective method for fine-tuning the electrochemical characteristics of electrode materials, thereby enhancing the performance of aqueous ammonium-ion hybrid supercapacitors (A-HSCs). However, much of the current research on ion preintercalation lacks controllability, and the underlying mechanisms remain unclear. In this study, we employ a two-step electrochemical activation approach, involving galvanostatic charge-discharge and cyclic voltammetry, to modulate the preintercalation of NH4+ in MnO2. An in-depth analysis of the electrochemical activation mechanism is presented. This two-step electrochemical activation approach endows the final MnO2/AC electrode with a high capacitance of 917.4 F g-1, approximately 2.4 times higher than that of original MnO2. Furthermore, the MnO2/AC electrode retains approximately 93.4% of its capacitance after 10 000 cycles at a current density of 25 mA cm-2. Additionally, aqueous A-HSC, comprising MnO2/AC and P-MoO3, achieves a maximum energy density of 87.6 Wh kg-1. This study offers novel insights into the controllable ion preintercalation approach via electrochemical activation.

3.
J Clin Transl Hepatol ; 12(8): 701-712, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39130625

RESUMO

Background and Aims: Organic anion-transporting polypeptides (OATPs) play a crucial role in the transport of bile acids and bilirubin. In our previous study, interleukin 6 (IL-6) reduced OATP1B3 levels in cholestatic disease. However, it remains unclear whether IL-6 inhibits OATP1B1 expression in cholestatic diseases. This study aimed to investigate whether IL-6 can inhibit OATP1B1 expression and explore the underlying mechanisms. Methods: The effect of stimulator of interferon genes (STING) signaling on inflammatory factors was investigated in a cholestatic mouse model using RT-qPCR and enzyme-linked immunosorbent assay. To assess the impact of inflammatory factors on OATP1B1 expression in hepatocellular carcinoma, we analyzed OATP1B1 expression by RT-qPCR and Western Blot after treating PLC/PRF/5 cells with TNF-α, IL-1ß, and IL-6. To elucidate the mechanism by which IL-6 inhibits OATP1B1 expression, we examined the expression of the OATP1B1 regulator TCF4 in PLC/PRF/5 and HepG2 cells using RT-qPCR and Western Blot. The interaction mechanism between ß-catenin/TCF4 and OATP1B1 was investigated by knocking down ß-catenin/TCF4 through siRNA transfection. Results: The STING inhibitor decreased inflammatory factor levels in the cholestatic mouse model, with IL-6 exhibiting the most potent inhibitory effect on OATP1B1. IL-6 downregulated ß-catenin/TCF4, leading to decreased OATP1B1 expression. Knocking-down ß-catenin/TCF4 counteracted the ß-catenin/TCF4-mediated repression of OATP1B1. Conclusions: STING-mediated IL-6 up-regulation may inhibit OATP1B1, leading to reduced transport of bile acids and bilirubin by OATP1B1. This may contribute to altered pharmacokinetics in patients with diseases associated with increased IL-6 production.

4.
Front Oncol ; 14: 1380392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022586

RESUMO

Primary hepatic lymphoma (PHL) is rare, and its early diagnosis is difficult. This article presents a primary hepatic non-Hodgkin's lymphoma (NHL) case report. A 52-year-old woman was admitted to the hospital due to a fever. After undergoing laboratory examination, contrast-enhanced computed tomography (CT), ultrasound, and contrast-enhanced ultrasound (CEUS), only CEUS suggested malignancy. Then, the patient underwent a laparoscopic liver biopsy, which diagnosed NHL. Previous studies have shown that hepatic lymphoma is a hypoglycemic tumor, and the enhanced CT and magnetic resonance imaging (MRI) scans are mostly mildly intensified. At the same time, the two-dimensional and color Doppler ultrasonography are mostly atypical. CEUS has unique advantages in displaying micro-vessels, which can be helpful in the diagnosis of primary hepatic lymphoma.

5.
Mol Cell Biochem ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795212

RESUMO

Radiotherapy is the conventional treatment for pelvic abdominal tumors. However, it can cause some damage to the small intestine and colorectal, which are very sensitive to radiation. Radiation-induced intestinal injury (RIII) affects the prognosis of radiotherapy, causing sequelae of loss of function and long-term damage to patients' quality of life. Swertiamarin is a glycoside that has been reported to prevent a variety of diseases including but not limited to diabetes, hypertension, atherosclerosis, arthritis, malaria, and abdominal ulcers. However, its therapeutic effect and mechanism of action on RIII have not been established. We investigated whether swertiamarin has a protective effect against RIII. In this article, we use irradiator to create cellular and mouse models of radiation damage. Preventive administration of swertiamarin could reduce ROS and superoxide anion levels to mitigate the cellular damage caused by radiation. Swertiamarin also attenuated RIII in mice, as evidenced by longer survival, less weight loss and more complete intestinal barrier. We also found an increase in the relative abundance of primary bile acids in irradiated mice, which was reduced by both FXR agonists and swertiamarin, and a reduction in downstream interferon and inflammatory factors via the cGAS-STING pathway to reduce radiation-induced damage.

6.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793435

RESUMO

Research has established that the incorporation of 3D-printed lattice structures in cement substrates enhances the mechanical properties of cementitious materials. However, given that 3D-printing materials, notably polymers, exhibit varying degrees of mechanical performance under high-temperature conditions, their efficacy is compromised. Notably, at temperatures reaching 150 °C, these materials soften and lose their load-bearing capacity, necessitating further investigation into their compressive mechanical behavior in such environments. This study evaluates the compressibility of cement materials reinforced with lattice structures made from polyamide 6 (PA6) across different structural configurations and ambient temperatures, employing ABAQUS for simulation. Six distinct 3D-printed lattice designs with equivalent volume but varying configurations were tested under ambient temperatures of 20 °C, 50 °C, and 100 °C to assess their impact on compressive properties. The findings indicate that heightened ambient temperatures significantly diminish the reinforcing effect of 3D-printed materials on the properties of cement-based composites.

7.
Sci Total Environ ; 926: 171907, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522548

RESUMO

Traditional risk assessments of chiral pesticides mainly depend on racemic form, which is often incomprehensive. This study conducted systemic investigations on the bioactivity, toxicity, and ecotoxicological effects of hexythiazox (HTZ) at the enantiomer level. The elution order and absolute configuration of HTZ enantiomers were determined. (4R, 5R)-(+)-HTZ exhibited 708 and 1719 times higher bioactivity against Tetranychus cinnabarinus and Tetranychus urticae eggs than (4S, 5S)-(-)-HTZ, respectively. Molecular docking indicated greater interactions between (4R, 5R)-(+)-HTZ and chitin synthase leading to higher bioactivity of (4R, 5R)-(+)-HTZ. However, (4S, 5S)-(-)-HTZ induced greater changes in protein and malondialdehyde content, and antioxidant and detoxification enzyme activities than (4R, 5R)-(+)-HTZ in earthworms. Furthermore, integrated biomarker response results indicated (4S, 5S)-(-)-HTZ exhibited higher toxic effects on earthworms than (4R, 5R)-(+)-HTZ. Finally, significant differentially expressed genes (DEGs) were observed in earthworms after exposure to (4R, 5R)-(+)-HTZ and (4S, 5S)-(-)-HTZ, respectively. These DEGs were mainly enriched in glycolysis/gluconeogenesis and purine metabolism pathways in earthworms. Additionally, six metabolism pathways were also enriched, including pyruvate metabolism, fatty acid biosynthesis, oxidative phosphorylation, citric acid cycle, fatty acid degradation, and ATP-binding cassette transporters. These findings suggest that earthworms exhibited enantiomer-specific responses to (4R, 5R)-(+)-HTZ and (4S, 5S)-(-)-HTZ. This study provides systemic insight into the toxicity mechanism of HTZ at the enantiomer level and the potential to develop (4R, 5R)-(+)-HTZ as a high-efficiency and low-risk pesticide.


Assuntos
Acaricidas , Praguicidas , Tiazolidinas , Acaricidas/toxicidade , Simulação de Acoplamento Molecular , Praguicidas/toxicidade , Comportamento de Redução do Risco , Ácidos Graxos , Estereoisomerismo
8.
Pharmacol Res Perspect ; 12(2): e1186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511246

RESUMO

We conducted pharmacokinetic research wherein salcaprozate sodium (SNAC) was utilized as a penetration enhancer by incorporating it into pancreatic kininogenase (PK) to improve the bioavailability of pancreatic kininogenase enteric-coated tablets. We conducted in vitro studies on PK using the Caco-2 cell model and quantified PK levels using the enzyme-linked immunosorbent assay (ELISA) method. We conducted methodological verification by blending SNAC and PK powders into enteric-coated capsules, and studied the pharmacokinetic characteristics. Based on the PK transport assay, the cumulative permeation rates of the test group that employed a SNAC to PK ratio of 32:1, 16:1, 8:1, 4:1, and 2:1 were 13.574%, 7.597%, 10.653%, 3.755%, and 2.523%, respectively. We conducted a uniformity test on the powder that contained a blend of SNAC and PK. The relative standard deviations (RSDs) for both the power containing SNAC and the power not containing SNAC were less than 10%. Based on the methodological verification, in vivo pharmacokinetic study of PK met the experimental requirements. As indicated by the results of in vivo pharmacokinetic research on rats, the test group (This group used SNAC) had a PK AUC0-12 h of 5679.747 ng/L*h and t1/2 of 4.569 h, while the control group (This group did not use SNAC) had a PK AUC0-12 h of 4639.665 ng/L*h and t1/2 of 3.13 h. This study has established a low-cost, environmentally friendly, and safe SNAC synthesis route with high process yield suitable for industrial production. SNAC demonstrates an absorption-enhancing effect on PK, and the optimal ratio of SNAC to PK is determined to be 32:1.


Assuntos
Caprilatos , Calicreínas , Humanos , Ratos , Animais , Administração Oral , Células CACO-2
9.
Cancer Gene Ther ; 31(5): 790-801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429367

RESUMO

Patients diagnosed with glioblastoma (GBM) have the most aggressive tumor progression and lethal recurrence. Research on the immune microenvironment landscape of tumor and cerebrospinal fluid (CSF) is limited. At the single-cell level, we aim to reveal the recurrent immune microenvironment of GBM and the potential CSF biomarkers and compare tumor locations. We collected four clinical samples from two patients: malignant samples from one recurrent GBM patient and non-malignant samples from a patient with brain tumor. We performed single-cell RNA sequencing (scRNA-seq) to reveal the immune landscape of recurrent GBM and CSF. T cells were enriched in the malignant tumors, while Treg cells were predominately found in malignant CSF, which indicated an inhibitory microenvironment in recurrent GBM. Moreover, macrophages and neutrophils were significantly enriched in malignant CSF. This indicates that they an important role in GBM progression. S100A9, extensively expressed in malignant CSF, is a promising biomarker for GBM diagnosis and recurrence. Our study reveals GBM's recurrent immune microenvironment after chemoradiotherapy and compares malignant and non-malignant CSF samples. We provide novel targets and confirm the promise of liquid CSF biopsy for patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Recidiva Local de Neoplasia , Análise de Célula Única , Linfócitos T Reguladores , Microambiente Tumoral , Humanos , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/líquido cefalorraquidiano , Microambiente Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Recidiva Local de Neoplasia/imunologia , Análise de Célula Única/métodos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/genética , Biomarcadores Tumorais/líquido cefalorraquidiano , Biomarcadores Tumorais/metabolismo , Masculino
10.
Mol Biol Rep ; 51(1): 338, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393490

RESUMO

Pulmonary fibrosis (PF) is a progressive and fatal lung disease with high incidence and a lack of effective treatment, which is a severe public health problem. PF has caused a huge socio-economic burden, and its pathogenesis has become a research hotspot. SIRT1 is a nicotinamide adenosine dinucleotide (NAD)-dependent sirtuin essential in tumours, Epithelial mesenchymal transition (EMT), and anti-aging. Numerous studies have demonstrated after extensive research that it is crucial in preventing the progression of pulmonary fibrosis. This article reviews the biological roles and mechanisms of SIRT1 in regulating the progression of pulmonary fibrosis in terms of EMT, oxidative stress, inflammation, aging, autophagy, and discusses the potential of SIRT1 as a therapeutic target for pulmonary fibrosis, and provides a new perspective on therapeutic drugs and prognosis prospects.


Assuntos
Neoplasias , Fibrose Pulmonar , Sirtuína 1 , Humanos , Transição Epitelial-Mesenquimal , Fibrose , Estresse Oxidativo , Sirtuína 1/genética , Sirtuína 1/metabolismo
11.
J Cancer ; 15(2): 317-331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169514

RESUMO

Background: Immunotherapy has greatly changed the treatment of advanced non-small cell lung cancer (NSCLC). Anoikis is a programmed cell death process associated with cancer. However, the correlation between anoikis-related genes and the tumor microenvironment (TME) features and immunotherapeutic outcome in NSCLC has not been fully explored. Methods: The bulk and single-cell transcriptome data of NSCLC were downloaded from TCGA and GEO databases. The distribution of anoikis-related genes on different cell types at the single-cell level was analyzed, and these genes specifically expressed by tumor cells and immunotherapy-related were further extracted. Next, the candidate gene CTNND1 was identified and its correlations with the TME features and immunotherapeutic outcome in NSCLC were explored in multiple public cohorts. Finally, an in-house cohort was used to determine the CTNND1 expression and immuno-correlation in NSCLC. Results: At single-cell atlas, we found that anoikis-related genes expressed specifically in tumor cells of NSCLC. By intersecting anoikis-related genes, immunotherapy-associated genes, and the genes expressed in tumor cells, we obtained a special biomarker CTNND1. In addition, cell-cell communication analysis revealed that CTNND1+ tumor cells communicated with immune subpopulations frequently. Moreover, we found that high expression of CTNND1 was related to immuno-suppressive status of NSCLC. The expression of CTNND1 and its immuno-correlation were also validated, and the results showed that CTNND1 was highly expressed in NSCLC tissues and tumors with high CTNND1 expression accompanied with low CD8+ T cells infiltration. Conclusions: Overall, our study reported that CTNND1 can be considered as a novel biomarker for the predication of immunotherapeutic responses and a potential target for NSCLC therapy.

12.
Cell Biochem Biophys ; 82(2): 329-342, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38133792

RESUMO

The mammalian central nervous system consists of a large number of cells, which contain not only different types of neurons, but also a large number of glial cells, such as astrocytes, oligodendrocytes, and microglia. These cells are capable of performing highly refined electrophysiological activities and providing the brain with functions such as nutritional support, information transmission and pathogen defense. The diversity of cell types and individual differences between cells have brought inspiration to the study of the mechanism of central nervous system diseases. In order to explore the role of different cells, a new technology, single-cell sequencing technology has emerged to perform specific analysis of high-throughput cell populations, and has been continuously developed. Single-cell sequencing technology can accurately analyze single-cell expression in mixed-cell populations and collect cells from different spatial locations, time stages and types. By using single-cell sequencing technology to compare gene expression profiles of normal and diseased cells, it is possible to discover cell subsets associated with specific diseases and their associated genes. Therefore, scientists can understand the development process, related functions and disease state of the nervous system from an unprecedented depth. In conclusion, single-cell sequencing technology provides a powerful technology for the discovery of novel therapeutic targets for central nervous system diseases.


Assuntos
Doenças do Sistema Nervoso Central , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Doenças do Sistema Nervoso Central/genética , Animais
13.
Environ Res ; 244: 117934, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109957

RESUMO

Florfenicol, as a replacement for chloramphenicol, can tightly bind to the A site of the 23S rRNA in the 50S subunit of the 70S ribosome, thereby inhibiting protein synthesis and bacterial proliferation. Due to the widespread use in aquaculture and veterinary medicine, florfenicol has been detected in the aquatic environment worldwide. Concerns over the effects and health risks of florfenicol on target and non-target organisms have been raised in recent years. Although the ecotoxicity of florfenicol has been widely reported in different species, no attempt has been made to review the current research progress of florfenicol toxicity, hormesis, and its health risks posed to biota. In this study, a comprehensive literature review was conducted to summarize the effects of florfenicol on various organisms including bacteria, algae, invertebrates, fishes, birds, and mammals. The generation of antibiotic resistant bacteria and spread antibiotic resistant genes, closely associated with hormesis, are pressing environmental health issues stemming from overuse or misuse of antibiotics including florfenicol. Exposure to florfenicol at µg/L-mg/L induced hormetic effects in several algal species, and chromoplasts might serve as a target for florfenicol-induced effects; however, the underlying molecular mechanisms are completely lacking. Exposure to high levels (mg/L) of florfenicol modified the xenobiotic metabolism, antioxidant systems, and energy metabolism, resulting in hepatotoxicity, renal toxicity, immunotoxicity, developmental toxicity, reproductive toxicity, obesogenic effects, and hormesis in different animal species. Mitochondria and the associated energy metabolism are suggested to be the primary targets for florfenicol toxicity in animals, albeit further in-depth investigations are warranted for revealing the long-term effects (e.g., whole-life-cycle impacts, multigenerational effects) of florfenicol, especially at environmental levels, and the underlying mechanisms. This will facilitate the evaluation of potential hormetic effects and construction of adverse outcome pathways for environmental risk assessment and regulation of florfenicol.


Assuntos
Antibacterianos , Tianfenicol , Tianfenicol/análogos & derivados , Animais , Antibacterianos/toxicidade , Tianfenicol/toxicidade , Cloranfenicol/farmacologia , Bactérias , Mamíferos
14.
Polymers (Basel) ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959999

RESUMO

In addition to measuring the strain, stress, and Young's modulus of materials through tension and compression, in-plane shear modulus measurement is also an important part of parameter testing of composites. Tensile testing of ±45° composite laminates is an economical and effective method for measuring in-plane shear strength. In this paper, the in-plane shear modulus of T800 carbon fiber/epoxy composites were measured through tensile tests of ±45° composite laminates, and acoustic emission (AE) was used to characterize the damage of laminates under in-plane shear loading. Factor analysis (FA) on acoustic emission parameters was performed and the reconstructed factor scores were clustered to obtain three damage patterns. Finally, the development and evolution of the three damage patterns were characterized based on the cumulative hits of acoustic emission. The maximum bearing capacity of the laminated plate is about 17.54 kN, and the average in-plane shear modulus is 5.42 GPa. The damage modes of laminates under in-plane shear behavior were divided into three types: matrix cracking, delamination and fiber/matrix interface debonding, and fiber fracture. The characteristic parameter analysis of AE showed that the damage energy under in-plane shear is relatively low, mostly below 2000 mV × ms, and the frequency is dispersed between 150-350 kHz.

15.
Environ Sci Technol ; 57(42): 16053-16064, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37824517

RESUMO

Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.


Assuntos
Brassica , Ciprofloxacina , Rizosfera , Nitratos , Nitrogênio/análise , Antibacterianos , Bactérias/genética , Plantas , Solo , Microbiologia do Solo
16.
Neuropharmacology ; 240: 109728, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742716

RESUMO

Post-traumatic stress disorder (PTSD) is a complex mental disorder, closely associated with stress and traumatic events. Salidroside (Sal) has been reported to possess neuroprotective effects. However, the behavioral effects and mechanisms of Sal on PTSD remain unknown. In this study, we utilized a rat model of PTSD induced by single prolonged stress (SPS) and administered Sal intraperitoneally (25, 50, 75 mg/kg/d) for 14 days. We then examined the behavioral effects and underlying mechanisms of Sal on SPS-induced PTSD rats. Our findings demonstrated that Sal alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD rats. Furthermore, Sal treatment preserved the histomorphology of the hippocampal region. It was observed that Sal protected against hippocampal neuronal apoptosis in PTSD rats by reducing the number of TUNEL-positive cells and modulating apoptosis-related proteins (Bcl-2 and Bax). Additionally, Sal inhibited the activation of the NF-κB/iNOS/COX-2 signaling pathway in the hippocampus of PTSD rats, thereby suppressing the release of inflammatory factors (TNF-α and IL-1ß) and the activation of microglia. Notably, Sal increased the expression of synapse-associated proteins PSD95 and Synapsin I in the hippocampus, while also enhancing dendritic density in the region. In conclusion, our results demonstrated that Sal could attenuate SPS-induced PTSD-like behaviors by inhibiting hippocampal neuronal apoptosis, enhancing hippocampal synaptic plasticity, and reducing neuroinflammatory responses. These findings may provide a foundation for the potential clinical application of Sal in the treatment of PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Ratos , Animais , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Fenóis/farmacologia , Fenóis/uso terapêutico , Hipocampo/metabolismo , Modelos Animais de Doenças
17.
Front Plant Sci ; 14: 1211830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670853

RESUMO

As a fruit with high economic value, strawberry has a short ripeness period, and harvesting at an incorrect time will seriously affect the quality of strawberries, thereby reducing economic benefits. Therefore, the timing of its harvesting is very demanding. A fine ripeness recognition can provide more accurate crop information, and guide strawberry harvest management more timely and effectively. This study proposes a fine recognition method for field strawberry ripeness that combines deep learning and image processing. The method is divided into three stages: In the first stage, self-calibrated convolutions are added to the Mask R-CNN backbone network to improve the model performance, and then the model is used to extract the strawberry target in the image. In the second stage, the strawberry target is divided into four sub-regions by region segmentation method, and the color feature values of B, G, L, a and S channels are extracted for each sub-region. In the third stage, the strawberry ripeness is classified according to the color feature values and the results are visualized. Experimental results show that with the incorporation of self-calibrated convolutions into the Mask R-CNN, the model's performance has been substantially enhanced, leading to increased robustness against diverse occlusion interferences. As a result, the final average precision (AP) has improved to 0.937, representing a significant increase of 0.039 compared to the previous version. The strawberry ripeness classification effect is the best on the SVM classifier, and the accuracy under the combined channel BGLaS reaches 0.866. The classification results are better than common manual feature extraction methods and AlexNet, ResNet18 models. In order to clarify the role of the region segmentation method, the contribution of different sub-regions to each ripeness is also explored. The comprehensive results demonstrate that the proposed method enables the evaluation of six distinct ripeness levels of strawberries in the complex field environment. This method can provide accurate decision support for strawberry refined planting management.

18.
Front Immunol ; 14: 1195421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554321

RESUMO

Objectives: Postoperative acute kidney injury (pAKI) is a serious complication of Stanford type A aortic dissection (TAAD) surgery, which is significantly associated with the inflammatory response. This study aimed to explore the relationship between blood count-derived inflammatory markers (BCDIMs) and pAKI and to construct a predictive model for pAKI. Methods: Patients who underwent TAAD surgery were obtained from our center and the Medical Information Mart for Intensive Care (MIMIC)-IV database. The differences in preoperative BCDIMs and clinical outcomes of patients with and without pAKI were analyzed. Logistic regression was used to construct predictive models based on preoperative BCDIMs or white cell counts (WCCs). The performance of the BCDIMs and WCCs models was evaluated and compared using the receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), Hosmer-Lemeshow test, calibration plot, net reclassification index (NRI), integrated discrimination improvement index (IDI), and decision curve analysis (DCA). The Kaplan-Meier curves were applied to compare the survival rate between different groups. Results: The overall incidence of pAKI in patients who underwent TAAD surgery from our center was 48.63% (124/255). The presence of pAKI was associated with longer ventilation time, higher incidence of cerebral complications and postoperative hepatic dysfunction, and higher in-hospital mortality. The results of the logistic regression indicated that the monocyte-lymphocyte ratio (MLR) was an independent risk factor for pAKI. The BCDIMs model had good discriminating ability, predictive ability, and clinical utility. In addition, the performance of the BCDIMs model was significantly better than that of the WCCs model. Analysis of data from the MIMIC-IV database validated that MLR was an independent risk factor for pAKI and had predictive value for pAKI. Finally, data from the MIMIC-IV database demonstrated that patients with a high MLR had a significantly poor 28-day survival rate when compared to patients with a low MLR. Conclusion: Our study suggested that the MLR is an independent risk factor for pAKI. A predictive model based on BCDIMs had good discriminating ability, predictive ability, and clinical utility. Moreover, the performance of the BCDIMs model was significantly better than that of the WCCs model. Finally, a high MLR was significantly associated with poor short-term survival of patients who underwent TAAD surgery.


Assuntos
Injúria Renal Aguda , Dissecção Aórtica , Humanos , Monócitos , Prognóstico , Linfócitos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Dissecção Aórtica/cirurgia
19.
Front Endocrinol (Lausanne) ; 14: 1063496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484957

RESUMO

Objective: The mortality of type A aortic dissection (TAAD) is extremely high. The effect of postoperative hyperglycemia (PHG) on the prognosis of TAAD surgery is unclear. This study aims to investigate the prognosis of patients with PHG after TAAD surgery and construct prediction model for PHG. Methods: Patients underwent TAAD surgery from January 2016 to December 2020 in Xiangya Hospital were collected. A total of 203 patients were included and patients were divided into non PHG group and PHG group. The occurrence of postoperative delirium, cardiac complications, spinal cord complication, cerebral complications, acute kidney injury (AKI), hepatic dysfunction, hypoxemia, and in-hospital mortality were compared between two groups. Data from MIMIC-IV database were further applied to validate the relationship between PHG and clinical outcomes. The prediction model for PHG was then constructed using Extreme Gradient Boosting (XGBoost) analysis. The predictive value of selected features was further validated using patient data from MIMIC-IV database. Finally, the 28-days survival rate of patient with PHG was analyzed using data from MIMIC-IV database. Results: There were 86 patients developed PHG. The incidences of postoperative AKI, hepatic dysfunction, and in-hospital mortality were significant higher in PHG group. The ventilation time after surgery was significant longer in PHG group. Data from MIMIC-IV database validated these results. Neutrophil, platelet, lactic acid, weight, and lymphocyte were selected as features for prediction model. The values of AUC in training and testing set were 0.8697 and 0.8286 respectively. Then, five features were applied to construct another prediction model using data from MIMIC-IV database and the value of AUC in the new model was 0.8185. Finally, 28-days survival rate of patients with PHG was significantly lower and PHG was an independent risk factor for 28-days mortality after TAAD surgery. Conclusion: PHG was significantly associated with the occurrence of AKI, hepatic dysfunction, increased ventilation time, and in-hospital mortality after TAAD surgery. The feature combination of neutrophil, platelet, lactic acid, weight, and lymphocyte could effectively predict PHG. The 28-days survival rate of patients with PHG was significantly lower. Moreover, PHG was an independent risk factor for 28-days mortality after TAAD surgery.


Assuntos
Injúria Renal Aguda , Dissecção Aórtica , Hiperglicemia , Humanos , Estudos Retrospectivos , Complicações Pós-Operatórias , Prognóstico , Injúria Renal Aguda/etiologia , Hiperglicemia/complicações
20.
Sensors (Basel) ; 23(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299789

RESUMO

Weak fault detection with stochastic resonance (SR) is distinct from conventional approaches in that it is a nonlinear optimal signal processing to transfer noise into the signal, resulting in a higher output SNR. Owing to this special characteristic of SR, this study develops a controlled symmetry with Woods-Saxon stochastic resonance (CSwWSSR) model based on the Woods-Saxon stochastic resonance (WSSR), where each parameter of the model may be modified to vary the potential structure. Then, the potential structure of the model is investigated in this paper, along with the mathematical analysis and experimental comparison to clarify the effect of each parameter on it. The CSwWSSR is a tri-stable stochastic resonance, but differs from others in that each of its three potential wells is controlled by different parameters. Moreover, the particle swarm optimization (PSO), which can quickly find the ideal parameter matching, is introduced to attain the optimal parameters of the CSwWSSR model. Fault diagnosis of simulation signals and bearings was carried out to confirm the viability of the proposed CSwWSSR model, and the results revealed that the CSwWSSR model is superior to its constituent models.


Assuntos
Algoritmos , Vibração , Simulação por Computador , Processamento de Sinais Assistido por Computador , Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA