Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Colloid Interface Sci ; 657: 414-427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056046

RESUMO

CeCoMnOx spinel-type catalysts for the selective catalytic reduction of NO using NH3 (NH3-SCR) are usually prepared by alkaline co-precipitation. In this paper, a series of CeCoMnOx spinel-type catalysts with different calcination temperatures were prepared by acidic oxalate co-precipitation. The physicochemical structures and NH3-SCR activities of the CeCoMnOx spinel-type catalysts prepared by oxalate co-precipitation and conventional ammonia co-precipitation were systematically compared. The results show that the CeCoMnOx spinel-type catalysts prepared by the oxalate precipitation method (CeCoMnOx-C) have larger specific surface area, more mesopores and surface active sites, stronger redox properties and adsorption activation properties than those prepared by the traditional ammonia co-precipitation method at 400 °C (CeCoMnOx-N-400), and thus CeCoMnOx-C have better low-temperature NH3-SCR performance. At the same calcination temperature of 400 °C, the NO conversion of CeCoMnOx-C-400 exceeds 89 % and approaches 100 % within the reaction temperature of 100-125 °C, which is 14.8 %-2.5 % higher than that of CeCoMnOx-N-400 at 100-125 °C. In addition, the enhanced redox and acid cycle matching mechanisms on the CeCoMnOx-C surface, as well as the enhanced monoadsorption Eley-Rideal (E-R) and double adsorption Langmuir-Hinshelwood (L-H) reaction mechanisms, are also derived from XPS and in situ DRIFTS characterization.

2.
Environ Sci Technol ; 57(39): 14737-14746, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738479

RESUMO

Mn-based catalysts preferred in low-temperature selective catalytic reduction (SCR) are susceptible to SO2 poisoning. The stubborn sulfates make insufficient O2 activation and result in deficient reactive oxygen species (ROS) for activating reaction molecules. H2O has long been regarded as an accomplice to SO2, hastening catalyst deactivation. However, such a negative impression of the SCR reaction was reversed by our recent research. Here, we reported a H2O contribution over Mn-based SCR catalysts to counteract SO2 poisoning through accessible O2 activation, in which O2 was synergistically activated with H2O to generate ROS for less deactivation and more expected regeneration. The resulting ROS benefited from the energetically favorable route supported by water-induced Ea reduction and was actively involved in the NH3 activation and NO oxidation process. Besides, ROS maintained high stability over the SO2 + H2O-deactivated γ-MnO2 catalyst throughout the mild thermal treatment, achieving complete regeneration of its own NO disposal ability. This strategy was proven to be universally applicable to other Mn-based catalysts.

3.
J Colloid Interface Sci ; 613: 320-336, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35051718

RESUMO

This work investigated the influence of introduction methods of cerium and tin on the physicochemical properties as well as the activity and durability of titanium-based catalysts for the selective catalytic reduction of NO by NH3 (NH3-SCR). Precipitation and impregnation methods were adopted to synthesize a series of cerium-tin-titanium catalysts. These catalysts were characterized by XRD, Raman, N2 adsorption-desorption, HRTEM, EDS mapping, XPS, H2-TPR, NH3-TPD and in situ DRIFT. Notably, Ce/Sn/Ti(imp) catalyst prepared by stepwise-impregnation method could provide an interface between Ce and Sn for more facile electron transfer than Sn/Ce-Ti(co), Ce/Sn-Ti(co) and Sn/Ce/Ti(imp) catalysts. It promoted the redox equilibrium of Ce4+ + Sn2+ ↔ Ce3+ + Sn4+ shifting to right to produce adequate Ce3+ and surface adsorbed oxygen, resulting in optimal reducibility and surface acidity of Ce/Sn/Ti(imp) catalyst. Besides, the activation of NH3 and desorption of NOx readily occurred on the surface of Ce/Sn/Ti(imp), which were favorable for the proceeding of subsequent reactions and excellent performance of NH3-SCR.

4.
J Hazard Mater ; 396: 122459, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302885

RESUMO

A series of copper-modified red mud catalysts (CuO/PRM) with different copper oxide contents were synthesized by wet impregnation method and investigated for selective catalytic reduction of NO by NH3 (NH3-SCR). The catalytic results demonstrated that the red mud catalyst with 7 wt% CuO content exhibited the excellent catalytic performance as well as resistance to water and sulfur poisoning. The red mud support and copper-containing catalysts were characterized by XRF, XRD, N2 adsorption-desorption, HRTEM, EDS mapping, XPS, H2-TPR, NH3-TPD and in situ DRIFT. The obtained results revealed that well dispersed copper oxide originating from 1 to 7 wt% CuO contents was more facile for the redox equilibrium of Cu2+ + Fe2+ ↔ Cu+ + Fe3+ shifting to right to form Cu+ and surface oxygen species than crystalline CuO generating from high CuO loading (9 wt% CuO), which was beneficial to the enhancement of reducibility and the formation of Lewis acid sites on the catalyst surface. All these factors made significant contributions to the improvement of NH3-SCR activities for CuO/PRM catalysts. Moreover, in situ DRIFT analysis combined with DFT calculated results confirmed that the finely dispersed copper species not only enhanced the NH3 activation but also promoted the NOx desorption, which synergistically facilitated the NH3-SCR process via the Eley-Rideal mechanism.

5.
J Hazard Mater ; 396: 122592, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32298863

RESUMO

Nitrogen oxides (NOx) are a primary source of air pollutants from combustion of fossil fuels. Though Mn-Ce based catalysts exhibit superior low temperature activities, their water and SO2 tolerance is inferior to other metal oxide catalysts, due to their strong water adsorption and sulfate species formation tendency at low reaction temperatures. Herein, a confinement strategy was adopted to design and synthesize a novel Mn-Ce based catalyst for selective catalytic reduction of NOx with NH3. The confined MnCeOx catalyst was assembled with a simple one pot method, using a mesoporous zeolite (ZSM-5) as the shell and Mn-Ce oxides as the active core (MnCeOx@Z5). Owing to the zeolite shell's shielding effect and the synergy between the alumina-silica zeolite shell's acidic properties and the mixed oxide cores' redox properties, the novel MnCeOx@Z5 catalyst displayed enhanced water and SO2 resistance as compared to the MnCeOx supported on ZSM-5 (MnCeOx/Z5) and its precursor (MnCeOx@Al-SiO2). Evidently, the zeolite sheath hinders sulfate species formation, and this phenomenon was further investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (In situ DRIFTS). The novel shielding and acid-redox synergy effect/strategy adopted in this work can be applied to design other high performance deNOx catalysts for air pollution control.

6.
J Colloid Interface Sci ; 554: 611-618, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31336353

RESUMO

NO reduction by CO was investigated over CO-pretreated CuO/MnOx/γ-Al2O3 catalysts with different metal precursors (nitrate and acetate). It was found that the catalyst prepared from acetate salts (Cu/Mn/Al-A) exhibited significantly higher activity than counterpart catalyst from nitrate precursors (Cu/Mn/Al-N). XRD, XPS and in situ DRIFT were carried out to approach the nature for the different catalytic performance. For both catalysts, copper mainly existed as CuO, but the status of manganese oxide was markedly different. Mn(IV) was predominant in Cu/Mn/Al-N and Mn(III) was enriched in Cu/Mn/Al-A. As a result, different dispersion behaviors of manganese oxide on γ-Al2O3 were displayed, which induced inconsistent Cu-Mn contact. The catalyst obtained from acetate precursor exhibited enriched Cu-Mn contact and thus more Cu+-□-Mn3+/2+ entities would be produced after CO pretreatment, leading to promoted NO dissociation and favorable performance in NO reduction by CO. The present study sheds light on the effective tuning of Cu-O-Mn interfacial sites in CuO/MnOx/γ-Al2O3 via modulating the dispersion behaviors of surface components.

7.
ACS Appl Mater Interfaces ; 11(5): 4900-4907, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30650968

RESUMO

Sulfur poisoning has long been recognized as a bottleneck for the development of long-lived NH3-selective catalytic reduction (SCR) catalysts. Ammonium bisulfate (ABS) deposition on active sites is the major cause of sulfur poisoning at low temperatures, and activating ABS decomposition is regarded as the ultimate way to alleviate sulfur poisoning. In the present study, we reported an interesting finding that ABS decomposition can be simply tailored via adjusting the pore size of the material it deposited. We initiated this study from the preparation of mesoporous silica SBA-15 with uniform one-dimensional pore structure but different pore sizes, followed by ABS loading to investigate the effect. The results showed that ABS decomposition proceeded more easily on SBA-15 with larger pores, and the decomposition temperature declined as large as 40 °C with increasing pore size of SBA-15 from 4.8 to 11.8 nm. To further ascertain the real effect in NH3-SCR reaction, the Fe2O3/SBA-15 probe catalyst was prepared. It was found that the catalyst with larger mesopores exhibited much improved sulfur resistance, and quantitative analysis results obtained from Fourier transform infrared and ion chromatograph further proved that the deposited sulfates were greatly alleviated. The result of the present study demonstrates for the first time the vital role of pore size engineering in ABS decomposition and may open up new opportunities for designing NH3-SCR catalysts with excellent sulfur resistance.

8.
J Environ Sci (China) ; 75: 124-135, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473277

RESUMO

We first present preparation of MnOx-CeO2-Al2O3 catalysts with varying Mn contents through a self-propagating high-temperature synthesis (SHS) method, and studied the application of these catalysts to the selective catalytic reduction of NOx with NH3 (NH3-SCR). Using the catalyst with 18 wt.% Mn (18MnCe1Al2), 100% NO conversion was achieved at 200°C and a gas hourly space velocity of 15384hr-1, and the high-efficiency SCR temperature window, where NO conversion is greater than 90%, was widened to a temperature range of 150-300°C. 18MnCe1Al2 showed great resistance to SO2 (100 ppm) and H2O (5%) at 200°C. The catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and H2 temperature programmed reduction. The characterization results showed that the surface atomic concentration of Mn increased with increasing Mn content, which led to synergism between Mn and Ce and improved the activity in the SCR reaction. 18MnCe1Al2 has an extensive pore structure, with a BET surface area of approximately 135.4m2/g, a pore volume of approximately 0.16cm3/g, and an average pore diameter of approximately 4.6 nm. The SCR reaction on 18MnCe1Al2 mainly followed the Eley-Rideal mechanism. The performances of the MnOx-CeO2-Al2O3 catalysts were good, and because of the simplicity of the preparation process, the SHS method is applicable to their industrial-scale manufacture.


Assuntos
Óxido de Alumínio/química , Cério/química , Temperatura Alta , Modelos Químicos , Óxido Nítrico/química , Amônia/química , Catálise , Nitrogênio , Oxirredução , Óxidos/química , Oxigênio , Temperatura , Titânio/química
9.
J Colloid Interface Sci ; 509: 334-345, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918376

RESUMO

Catalytic reduction of NO by CO was studied over a series of CuO-CoOx/γ-Al2O3 catalysts prepared by co-impregnation with different copper and cobalt precursors (acetate and nitrate) to evaluate the structure-activity relationship. The obtained samples were characterized in detail by means of XRD, LRS, XPS, H2-TPR and in situ FT-IR technologies. Results indicate that copper oxide is agglomerated while cobalt oxide is dispersed on γ-Al2O3 for the catalyst prepared from copper acetate and cobalt acetate precursors (CuACoA); CuxCo3-xO4 spinel is formed and agglomerated on the catalyst prepared from copper nitrate and cobalt nitrate precursors (CuNCoN); while both copper oxide and cobalt oxide could be homogeneously dispersed for the catalyst prepared from copper nitrate and cobalt acetate precursors (CuNCoA), which exhibits the best activity for NO reduction by CO. Probably the synergistic effect between dispersed copper oxide and cobalt oxide is propitious to the oxygen transfer, which could be the reason for its high activities. Finally, a possible reaction mechanism was tentatively proposed to explore the different catalytic performances in NO reduction by CO model reaction.

10.
ACS Omega ; 3(5): 5692-5703, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458769

RESUMO

MnO x -CeO2-Al2O3 powdered and preformed catalysts were prepared through self-propagating high-temperature synthesis (SHS) and impregnation methods. Compared to the traditional impregnation method, the SHS method has a shorter catalyst preparation cycle and simpler preparation process. The characterization results showed that mixed crystals of cerium, aluminum, and manganese oxides were formed through the SHS method, the binding energy of Mn4+ increased, and the active components were distributed uniformly. The MnO x -CeO2-Al2O3 powdered catalyst had an extensive pore structure, with a Brunauer-Emmett-Teller surface area of approximately 136 m2/g, a pore volume of approximately 0.17 cm3/g, and an average pore diameter of approximately 5.1 nm. Furthermore, the MnO x -CeO2-Al2O3 powdered catalyst achieved a NO x conversion higher than 80% at 100-250 °C. Coating liquids with identical metal-ion concentrations were prepared using the catalysts, and the preformed catalyst obtained through the SHS method had a higher loading capacity after one coating. The MnO x -CeO2-Al2O3 preformed catalyst achieved a NO x conversion higher than 70% at 200-350 °C.

11.
RSC Adv ; 8(7): 3858-3868, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35542909

RESUMO

Chromium oxide nano-particles with an average diameter of 3 nm covered by amorphous carbon (CrO x /C) were successfully synthesized. The synthesized CrO x /C materials were used for the selective catalytic reduction of NO x by NH3 (NH3-SCR), which shows superb NH3-SCR activity and in particular, satisfactory regeneration ability in the presence of SO2 compared with Mn-based catalysts. The as-prepared catalysts were characterized by XRD, HRTEM, Raman, FTIR, BET, TPD, TPR, XPS and in situ FTIR techniques. The results indicated presence of certain amounts of unstable lattice oxygen exposed on the surface of CrO x nano-particles with an average size of 3 nm in the CrO x /C samples, which led to NO being conveniently oxidized to NO2. The formed NO2 participated in NH3-SCR activity, reacting with catalysts via a "fast NH3-SCR" pathway, which enhanced th NH3-SCR performance of the CrO x /C catalysts. Furthermore, the stable lattice of the CrO x species made the catalyst immune to the sulfation process, which was inferred to be the cause of its superior regeneration ability in the presence of SO2. This study provides a simple way to synthesize stable CrO x nano-particles with active oxygen, and sheds light on designing NH3-SCR catalysts with highly efficient low temperature activity, SO2 tolerance, and regeneration ability.

12.
Phys Chem Chem Phys ; 19(32): 21840-21847, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28783181

RESUMO

A Cu-doped CeO2 solid solution was constructed by co-precipitation and additional acid treatment to investigate the behavior of doped copper under thermal treatment. Acid treatment was used to intentionally remove the surface Cu species. Surface properties and fundamental characteristics of the catalysts were characterized by several techniques, as well as the CO oxidation performance. The results reveal that doped Cu ions could gradually migrate from the matrix to the catalyst surface during calcination. The degree of migration was mostly dependent on the calcination temperature, and also the concentration gradient of Cu between the surface and matrix. Catalytic testing in CO oxidation showed that the migration induced a distinct promotional effect on the activities of catalysts, supposedly closely related to the increased surface active Cu species and improved redox properties generated by the Cu migration. The present study offers renewed understanding of the dynamic behavior of ceria-based solid solution catalysts.

13.
Phys Chem Chem Phys ; 17(24): 15996-6006, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26027847

RESUMO

Two different precursors, manganese nitrate (MN) and manganese acetate (MA), were employed to prepare two series of catalysts, i.e., xCuyMn(N)/TiO2 and xCuyMn(A)/TiO2, by a co-impregnation method. The catalysts were characterized by XRD, LRS, CO-TPR, XPS and EPR spectroscopy. The results suggest that: (1) both xCuyMn(N)/TiO2 and xCuyMn(A)/TiO2 catalysts exhibit much higher catalytic activities than an unmodified Cu/TiO2 catalyst in the NO + CO reaction. Furthermore, the activities of catalysts modified with the same amount of manganese are closely dependent on manganese precursors. (2) The enhancement of activities for Mn-modified catalysts should be attributed to the formation of the surface synergetic oxygen vacancy (SSOV) Cu(+)-□-Mn(y+) in the reaction process. Moreover, since the formation of the SSOV (Cu(+)-□-Mn(3+)) in the xCuyMn(N)/TiO2 catalyst is easier than that (Cu(+)-□-Mn(2+)) in the xCuyMn(A)/TiO2 catalyst, the activity of the xCuyMn(N)/TiO2 catalyst is higher than that of the xCuyMn(A)/TiO2 catalyst. This conclusion is well supported by the XPS and EPR results.

14.
Chem Commun (Camb) ; 51(16): 3470-3, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25628073

RESUMO

FeMnTiOx mixed oxide is prepared by the CTAB-assisted co-precipitation method, and the transformation of anatase into rutile is inhibited by CTAB to some extent. The catalyst obtained in the present work shows nearly 100% NO conversion at 100-350 °C, more than 80% N2 selectivity at 75-200 °C, and excellent H2O durability for the selective catalytic reduction of NO by NH3 with a space velocity of 30,000 mL g(-1) h(-1).

15.
Phys Chem Chem Phys ; 15(36): 14945-50, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23925070

RESUMO

An in situ technique is employed to tailor the valence states of copper in CuOδ/γ-Al2O3 catalysts with the purpose of inducing superior catalytic performance for simultaneous elimination of NO and CO. The catalyst with zero-valent copper exhibits excellent catalytic performance, which is comparable with the conventional supported noble-metal catalysts.


Assuntos
Óxido de Alumínio/química , Monóxido de Carbono/química , Cobre/química , Óxido Nítrico/química , Catálise
16.
J Colloid Interface Sci ; 380(1): 16-24, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22633574

RESUMO

A series of copper-containing SBA-15 samples were successfully synthesized via evaporation-induced self-assembly route. The resulting materials were characterized by X-ray diffraction (XRD), (29)Si MAS NMR spectroscopy, transmission electron microscopy (TEM), N(2) sorption, inductively coupling plasma-atomic emission spectrometer (ICP-AES), thermogravimetry, and differential thermal analysis (TG-DTA), Fourier-transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis) and X-ray photoelectron spectroscopy (XPS). The results indicated that: (1) all the samples exhibited typical hexagonal arrangement of mesoporous structure; (2) copper ions could be incorporated into the framework of SBA-15; (3) the addition of urea in the hydrothermal stage efficiently reduced the leaching of copper and improved the thermal stability of the mesoporous materials. Catalytic performances of the obtained materials were evaluated in the hydroxylation of phenol with H(2)O(2). The catalytic tests showed that the synthesized materials exhibited high activity for this reaction and copper ions in the framework were more active than copper species in the extra-framework position. The nitric acid treatment on the samples removed the bulk CuO species, which resulted in a dramatic increase in the catalytic activity.


Assuntos
Cobre/química , Fenol/química , Dióxido de Silício/química , Catálise , Técnicas de Química Sintética , Hidroxilação , Dióxido de Silício/síntese química , Ureia/química
17.
J Colloid Interface Sci ; 354(1): 341-52, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21074167

RESUMO

The present work focuses on the combination of ceria with another oxide of different ionic valences from period 3 (Mg(2+), Al(3+), and Si(4+)) using coprecipitation method, followed by calcination at 450 and 750°C, respectively. The textural, structural, morphological and redox properties of nanosized ceria-magnesia, ceria-alumina and ceria-silica mixed oxides have been investigated by means of N(2) physisorption, XRD, Raman, HRTEM, DRS, FT-IR, and H(2)-TPR technologies. XRD results of these mixed oxides reveal that only nanocrystalline ceria (ca. 3-6nm for the 450°C calcined samples) could be observed. The grain size of ceria increases with the increasing calcination temperature from 450 to 750°C due to sintering effect. The highest specific surface area is obtained at CeO(2)-Al(2)O(3) mixed oxides when calcination temperature reaches 750°C. Raman spectra display the cubic fluorite structure of ceria and the existence of oxygen vacancies, and displacement of oxygen ions from their normal lattice positions in the ceria-based mixed oxides. DRS measurements confirm that the smaller the grain size of the ceria, the higher indirect band gap energy. H(2)-TPR results suggest that the reductions of surface and bulk oxygen of ceria were predominant at low and high calcination temperature, respectively. Finally, CO oxidation were performed over these ceria-based mixed oxides, and the combination of CeO(2)-Al(2)O(3) exhibited highest activity irrespective of calcination temperature, which may due to excellent textural/structural properties, good homogeneity, and redox abilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA