Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39201796

RESUMO

Steroid-resistant asthma (SRA), resisting glucocorticoids such as dexamethasone (DEX), is a bottleneck in the treatment of asthma. It is characterized by a predominantly neutrophilic inflammatory subtype and is prone to developing into severe refractory asthma and fatal asthma. Currently, there is a lack of universally effective treatments for SRA. Moreover, since cold stimulation does increase the risk of asthma development and exacerbate asthma symptoms, the treatment of cold-stimulated SRA (CSRA) will face greater challenges. To find effective new methods to ameliorate CSRA, this study established a CSRA mouse model of allergic airway inflammation mimicking human asthma for the first time and evaluated the alleviating effects of 80% ethanol extract of mountain-cultivated ginseng (MCG) based on multi-omics analysis. The results indicate that cold stimulation indeed exacerbated the SRA-related symptoms in mice; the DEX individual treatment did not show a satisfactory effect; while the combination treatment of DEX and MCG could dose-dependently significantly enhance the lung function; reduce neutrophil aggregation; decrease the levels of LPS, IFN-γ, IL-1ß, CXCL8, and IL-17; increase the level of IL-10; alleviate the inflammatory infiltration; and decrease the mucus secretion and the expression of MUC5AC. Moreover, the combination of DEX and high-dose (200 mg/kg) MCG could significantly increase the levels of tight junction proteins (TJs), regulate the disordered intestinal flora, increase the content of short-chain fatty acids (SCFAs), and regulate the abnormal gene profile and metabolic profile. Multi-omics integrated analysis showed that 7 gut microbes, 34 genes, 6 metabolites, and the involved 15 metabolic/signaling pathways were closely related to the pharmacological effects of combination therapy. In conclusion, integrated multi-omics profiling highlighted the benefits of MCG for CSRA mice by modulating the interactions of microbiota, genes, and metabolites. MCG shows great potential as a functional food in the adjuvant treatment of CSRA.


Assuntos
Asma , Dexametasona , Panax , Extratos Vegetais , Animais , Asma/tratamento farmacológico , Asma/microbiologia , Asma/metabolismo , Panax/química , Camundongos , Dexametasona/farmacologia , Extratos Vegetais/farmacologia , Temperatura Baixa , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolômica/métodos , Microbiota/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Mucina-5AC/metabolismo , Mucina-5AC/genética , Citocinas/metabolismo , Resistência a Medicamentos/genética , Feminino , Multiômica
2.
Phytomedicine ; 128: 155366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537445

RESUMO

BACKGROUND: Yinhua Miyanling tablets (YMT), comprising 10 Chinese medicinal compounds, is a proprietary Chinese medicine used in the clinical treatment of urinary tract infections. Medicinal compounds, extracts, or certain monomeric components in YMT all show good effect on ulcerative colitis (UC). However, no evidence supporting YMT as a whole prescription for UC treatment is available. PURPOSE: To evaluate the anti-UC activity of YMT and elucidate the underlying mechanisms. The objective of the study was to provide evidence for the add-on development of YMT to treat UC. METHODS: First, YMT's protective effect on the intestinal barrier was evaluated using a lipopolysaccharide (LPS)-induced Caco-2 intestinal injury model. Second, the UC mouse model was established using dextran sodium sulfate (DSS) to determine YMT's influence on symptoms, inflammatory factors, intestinal barrier, and histopathological changes in the colon. Third, an integrated method combining metabolomics and network pharmacology was employed to screen core targets and key metabolic pathways with crucial roles in YMT's therapeutic effect on UC. Molecular docking was employed to identify the key targets with high affinity. Finally, western blotting was performed to validate the mechanism of YMT action against UC. RESULTS: YMT enhanced the transepithelial electrical resistance value and improved the expression of proteins of the tight junctions dose-dependently in LPS-induced Caco-2 cells. UC mice treated with YMT exhibited alleviated pathological lesions of the colon tissue in the in vivo pharmacodynamic experiments. The colonic lengths tended to be normal, and the levels of inflammatory factors (TNF-α, IL-6, and iNOS) along with those of the core enzymes (MPO, MDA, and SOD) improved. YMT effectively ameliorated DSS-induced colonic mucosal injury; pathological changes along with ultrastructure damage were significantly alleviated (evidenced by a relatively intact colon tissue, recovery of epithelial damage, repaired gland, reduced infiltration of inflammatory cells and epithelial cells arranged closely with dense microvilli). Seven key targets (IL-6, TNF-α, MPO, COX-2, HK2, TPH, and CYP1A2) and four key metabolic pathways (arachidonic acid metabolism, linoleate metabolism, glycolysis, and gluconeogenesis and tyrosine biosynthesis) were identified to play vital roles in the treatment on UC using YMT. CONCLUSIONS: YMT exerts beneficial therapeutic effects on UC by regulating multiple endogenous metabolites, targets, and metabolic pathways, suggestive of its potential novel application in UC treatment.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Metabolômica , Farmacologia em Rede , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Humanos , Células CACO-2 , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Camundongos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Comprimidos , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL
3.
Phytomedicine ; 124: 155292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190784

RESUMO

BACKGROUND: (-)-Syringaresinol (SYR), a natural lignan with significant antioxidant and anti-inflammatory activities, possesses various pharmacological benefits including cardio-protective, antibacterial, anticancer, and anti-aging effects. It was shown that the effectiveness of (+)-syringaresinol diglucoside on the ulcerative colitis (UC) was attributed to the active metabolite (+)-syringaresinol (the enantiomor of SYR). However, the efficacy of SYR against UC remains unclear, and the associated molecular mechanism has not been revealed yet PURPOSE: This study aimed to assess the protective effect of SYR in UC and its underlying mechanism STUDY DESIGN AND METHODS: We examined SYR's protective impact on the intestinal epithelial barrier and its ability to inhibit inflammatory responses in both a lipopolysaccharide (LPS)-induced Caco-2 cell model and a dextran sodium sulfate (DSS)-induced UC mouse model. We also explored the potential signaling pathways regulated by SYR using transcriptome analysis and western blot assay RESULTS: In Caco-2 cells, SYR significantly increased trans-epithelial electrical resistance, reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), and cyclooxygenase-2 (COX-2) levels, and enhanced cellular tight junction protein expression and distribution. In mice with UC, oral treatment with SYR (10, 20, 40 mg·kg-1) dose-dependently increased body weight, colon length, and expression of tight junction proteins, decreased disease activity index score, spleen coefficient, cytokine serum levels, bacterial translocation, and intestinal damage, and also preserved the ultrastructure of colonic mucosal cells. Transcriptomics indicated that the anti-UC effect of SYR is mediated via the PI3K-Akt/MAPK/Wnt signaling pathway. CONCLUSION: In summary, SYR effectively mitigated the development of UC by enhancing the intestinal epithelial barrier function and attenuating the inflammatory response. The plant-derived product SYR might be a potentially effective therapeutical agent against UC.


Assuntos
Colite Ulcerativa , Colite , Furanos , Lignanas , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Células CACO-2 , Fosfatidilinositol 3-Quinases/metabolismo , Colo/patologia , Lignanas/farmacologia , Lignanas/uso terapêutico , Mucosa Intestinal/metabolismo , Modelos Animais de Doenças , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente
4.
Molecules ; 28(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838515

RESUMO

BACKGROUND: Saussurea pulchella (SP) is a traditional medicinal plant that is widely used in folk medicine because of its diverse biological activities, particularly its anti-inflammatory effects. However, the alleviation effect of SP on ulcerative colitis (UC) has not yet been realized. PURPOSE: To investigate the chemical composition and therapeutic effect of SP extract against UC. METHODS: First, qualitative and quantitative analysis of SP 75% ethanol extract was performed by UPLC-Q/TOF-MS. Second, a dextran sodium sulfate (DSS) model of UC mice was developed to study the effects of SP on the symptoms, inflammatory factors, oxidative stress indexes and colon histopathology. Third, an integration of network pharmacology with metabolomics was performed to investigate the key metabolites, biological targets and metabolisms closely related to the effect of SP. RESULTS: From the SP ethanol extract, 149 compounds were identified qualitatively and 20 were determined quantitatively. The SP could dose-dependently decrease the DAI score, spleen coefficient and the levels of TNF-α, IL-6, iNOS, MPO and MDA; increase the colon length, GSH level and SOD activity; and protect the intestinal barrier in the UC mice. Moreover, 10 metabolite biomarkers,18 targets and 5 metabolisms were found to play crucial roles in the treatment of UC with SP. CONCLUSIONS: SP 75% ethanol extract could effectively alleviate the progression of UC and, therefore, could be classified as a novel natural treatment for UC.


Assuntos
Colite Ulcerativa , Saussurea , Fator de Necrose Tumoral alfa , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Colo/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Saussurea/química , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA