Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Cell Rep ; 43(8): 114586, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137113

RESUMO

Our understanding of human fetal cerebellum development during the late second trimester, a critical period for the generation of astrocytes, oligodendrocytes, and unipolar brush cells (UBCs), remains limited. Here, we performed single-cell RNA sequencing (scRNA-seq) in human fetal cerebellum samples from gestational weeks (GWs) 18-25. We find that proliferating UBC progenitors distribute in the subventricular zone of the rhombic lip (RLSVZ) near white matter (WM), forming a layer structure. We also delineate two trajectories from astrogenic radial glia (ARGs) to Bergmann glial progenitors (BGPs) and recognize oligodendrogenic radial glia (ORGs) as one source of primitive oligodendrocyte progenitor cells (PriOPCs). Additionally, our scRNA-seq analysis of the trisomy 21 fetal cerebellum at this stage reveals abnormal upregulated genes in pathways such as the cell adhesion pathway and focal adhesion pathway, which potentially promote neuronal differentiation. Overall, our research provides valuable insights into normal and abnormal development of the human fetal cerebellum.

3.
Cell Discov ; 10(1): 74, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977679

RESUMO

The successful accomplishment of the first telomere-to-telomere human genome assembly, T2T-CHM13, marked a milestone in achieving completeness of the human reference genome. The upcoming era of genome study will focus on fully phased diploid genome assembly, with an emphasis on genetic differences between individual haplotypes. Most existing sequencing approaches only achieved localized haplotype phasing and relied on additional pedigree information for further whole-chromosome scale phasing. The short-read-based Strand-seq method is able to directly phase single nucleotide polymorphisms (SNPs) at whole-chromosome scale but falls short when it comes to phasing structural variations (SVs). To shed light on this issue, we developed a Nanopore sequencing platform-based Strand-seq approach, which we named NanoStrand-seq. This method allowed for de novo SNP calling with high precision (99.52%) and acheived a superior phasing accuracy (0.02% Hamming error rate) at whole-chromosome scale, a level of performance comparable to Strand-seq for haplotype phasing of the GM12878 genome. Importantly, we demonstrated that NanoStrand-seq can efficiently resolve the MHC locus, a highly polymorphic genomic region. Moreover, NanoStrand-seq enabled independent direct calling and phasing of deletions and insertions at whole-chromosome level; when applied to long genomic regions of SNP homozygosity, it outperformed the strategy that combined Strand-seq with bulk long-read sequencing. Finally, we showed that, like Strand-seq, NanoStrand-seq was also applicable to primary cultured cells. Together, here we provided a novel methodology that enabled interrogation of a full spectrum of haplotype-resolved SNPs and SVs at whole-chromosome scale, with broad applications for species with diploid or even potentially polypoid genomes.

4.
Sci Rep ; 14(1): 12355, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811747

RESUMO

Time-stamped cross-sectional data, which lack linkage across time points, are commonly generated in single-cell transcriptional profiling. Many previous methods for inferring gene regulatory networks (GRNs) driving cell-state transitions relied on constructing single-cell temporal ordering. Introducing COSLIR (COvariance restricted Sparse LInear Regression), we presented a direct approach to reconstructing GRNs that govern cell-state transitions, utilizing only the first and second moments of samples between two consecutive time points. Simulations validated COSLIR's perfect accuracy in the oracle case and demonstrated its robust performance in real-world scenarios. When applied to single-cell RT-PCR and RNAseq datasets in developmental biology, COSLIR competed favorably with existing methods. Notably, its running time remained nearly independent of the number of cells. Therefore, COSLIR emerges as a promising addition to GRN reconstruction methods under cell-state transitions, bypassing the single-cell temporal ordering to enhance accuracy and efficiency in single-cell transcriptional profiling.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Biologia Computacional/métodos , Algoritmos
5.
Signal Transduct Target Ther ; 9(1): 127, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782919

RESUMO

DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.


Assuntos
RNA Helicases DEAD-box , Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Humanos , Camundongos , Apoptose/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Homeostase/genética , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732044

RESUMO

High malignancy is a prominent characteristic of epithelial ovarian cancer (EOC), emphasizing the necessity for further elucidation of the potential mechanisms underlying cancer progression. Aneuploidy and copy number variation (CNV) partially contribute to the heightened malignancy observed in EOC; however, the precise features of aneuploidy and their underlying molecular patterns, as well as the relationship between CNV and aneuploidy in EOC, remain unclear. In this study, we employed single-cell sequencing data along with The Cancer Genome Atlas (TCGA) to investigate aneuploidy and CNV in EOC. The technique of fluorescence in situ hybridization (FISH) was employed using specific probes. The copy number variation within the genomic region of chromosome 8 (42754568-47889815) was assessed and utilized as a representative measure for the ploidy status of individual cells in chromosome 8. Differential expression analysis was performed between different subgroups based on chromosome 8 ploidy. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), and hub-gene analyses were subsequently utilized to identify crucial genes involved. By classifying enriched tumor cells into distinct subtypes based on chromosome 8 ploidy combined with TCGA data integration, we identified key genes driving chromosome 8 aneuploidy in EOC, revealing that PRKDC gene involvement through the mediated non-homologous end-joining pathway may play a pivotal role in disease progression. Further validation through analysis of the GEO and TCGA database and survival assessment, considering both mRNA expression levels and CNV status of PRKDC, has confirmed its involvement in the progression of EOC. Further functional analysis revealed an upregulation of PRKDC in both ovarian EOC cells and tissues, with its expression showing a significant correlation with the extent of copy number variation (CNV) on chromosome 8. Taken together, CNV amplification and aneuploidy of chromosome 8 are important characteristics of EOC. PRKDC and the mediated NHEJ pathway may play a crucial role in driving aneuploidy on chromosome 8 during the progression of EOC.


Assuntos
Aneuploidia , Cromossomos Humanos Par 8 , Variações do Número de Cópias de DNA , Progressão da Doença , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Cromossomos Humanos Par 8/genética , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
7.
Protein Cell ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780967

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions (DMRs) were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors (TFs), including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions (NDRs) in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening the fetal gene reprogramming in HCM.

8.
EBioMedicine ; 102: 105092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547579

RESUMO

BACKGROUND: The high heterogeneity of tumour and the complexity of tumour microenvironment (TME) greatly impacted the tumour development and the prognosis of cancer in the era of immunotherapy. In this study, we aimed to portray the single cell-characterised landscape of lung adenocarcinoma (LUAD), and develop an integrated signature incorporating both tumour heterogeneity and TME for prognosis stratification. METHODS: Single-cell tagged reverse transcription sequencing (STRT-seq) was performed on tumour tissues and matched normal tissues from 14 patients with LUAD for immune landscape depiction and candidate key genes selection for signature construction. Kaplan-Meier survival analyses and in-vitro cell experiments were conducted to confirm the gene functions. The transcriptomic profile of 1949 patients from 11 independent cohorts including nine public datasets and two in-house cohorts were obtained for validation. FINDINGS: We selected 11 key genes closely related to cell-to-cell interaction, tumour development, T cell phenotype transformation, and Ma/Mo cell distribution, including HLA-DPB1, FAM83A, ITGB4, OAS1, FHL2, S100P, FSCN1, SFTPD, SPP1, DBH-AS1, CST3, and established an integrated 11-gene signature, stratifying patients to High-Score or Low-Score group for better or worse prognosis. Moreover, the prognostically-predictive potency of the signature was validated by 11 independent cohorts, and the immunotherapeutic predictive potency was also validated by our in-house cohort treated by immunotherapy. Additionally, the in-vitro cell experiments and drug sensitivity prediction further confirmed the gene function and generalizability of this signature across the entire RNA profile spectrum. INTERPRETATION: This single cell-characterised 11-gene signature might offer insights for prognosis stratification and potential guidance for treatment selection. FUNDING: Support for the study was provided by National key research and development project (2022YFC2505004, 2022YFC2505000 to Z.W. and J.W.), Beijing Natural Science Foundation (7242114 to J.X.), National Natural Science Foundation of China of China (82102886 to J.X., 81871889 and 82072586 to Z.W.), Beijing Nova Program (20220484119 to J.X.), NSFC general program (82272796 to J.W.), NSFC special program (82241229 to J.W.), CAMS Innovation Fund for Medical Sciences (2021-1-I2M-012, 2022-I2M-1-009 to Z.W. and J.W.), Beijing Natural Science Foundation (7212084 to Z.W.), CAMS Key lab of translational research on lung cancer (2018PT31035 to J.W.), Aiyou Foundation (KY201701 to J.W.). Medical Oncology Key Foundation of Cancer Hospital Chinese Academy of Medical Sciences (CICAMS-MOCP2022003 to J.X.).


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Povo Asiático , Proteínas de Transporte , Comunicação Celular , Neoplasias Pulmonares/genética , Proteínas dos Microfilamentos , Proteínas de Neoplasias , Prognóstico , Microambiente Tumoral/genética , China
9.
Cancer Discov ; 14(6): 1082-1105, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445965

RESUMO

Colorectal cancer is a highly heterogeneous disease, with well-characterized subtypes based on genome, DNA methylome, and transcriptome signatures. To chart the epigenetic landscape of colorectal cancers, we generated a high-quality single-cell chromatin accessibility atlas of epithelial cells for 29 patients. Abnormal chromatin states acquired in adenomas were largely retained in colorectal cancers, which were tightly accompanied by opposite changes of DNA methylation. Unsupervised analysis on malignant cells revealed two epigenetic subtypes, exactly matching the iCMS classification, and key iCMS-specific transcription factors (TFs) were identified, including HNF4A and PPARA for iCMS2 tumors and FOXA3 and MAFK for iCMS3 tumors. Notably, subtype-specific TFs bind to distinct target gene sets and contribute to both interpatient similarities and diversities for both chromatin accessibilities and RNA expressions. Moreover, we identified CpG-island methylator phenotypes and pinpointed chromatin state signatures and TF regulators for the CIMP-high subtype. Our work systematically revealed the epigenetic basis of the well-known iCMS and CIMP classifications of colorectal cancers. SIGNIFICANCE: Our work revealed the epigenetic basis of the well-known iCMS and CIMP classifications of colorectal cancers. Moreover, interpatient minor similarities and major diversities of chromatin accessibility signatures of TF target genes can faithfully explain the corresponding interpatient minor similarities and major diversities of RNA expression signatures of colorectal cancers, respectively. This article is featured in Selected Articles from This Issue, p. 897.


Assuntos
Cromatina , Neoplasias Colorretais , Epigênese Genética , Análise de Célula Única , Fatores de Transcrição , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Cromatina/genética , Cromatina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica
10.
Cell Discov ; 10(1): 26, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443370

RESUMO

Single-cell whole-genome sequencing methods have undergone great improvements over the past decade. However, allele dropout, which means the inability to detect both alleles simultaneously in an individual diploid cell, largely restricts the application of these methods particularly for medical applications. Here, we develop a new single-cell whole-genome sequencing method based on third-generation sequencing (TGS) platform named Refresh-seq (restriction fragment ligation-based genome amplification and TGS). It is based on restriction endonuclease cutting and ligation strategy in which two alleles in an individual cell can be cut into equal fragments and tend to be amplified simultaneously. As a new single-cell long-read genome sequencing method, Refresh-seq features much lower allele dropout rate compared with SMOOTH-seq. Furthermore, we apply Refresh-seq to 688 sperm cells and 272 female haploid cells (secondary polar bodies and parthenogenetic oocytes) from F1 hybrid mice. We acquire high-resolution genetic map of mouse meiosis recombination at low sequencing depth and reveal the sexual dimorphism in meiotic crossovers. We also phase the structure variations (deletions and insertions) in sperm cells and female haploid cells with high precision. Refresh-seq shows great performance in screening aneuploid sperm cells and oocytes due to the low allele dropout rate and has great potential for medical applications such as preimplantation genetic diagnosis.

11.
Cell Rep ; 43(3): 113716, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412094

RESUMO

Ovarian endometriosis is characterized by the growth of endometrial tissue within the ovary, causing infertility and chronic pain. However, its pathophysiology remains unclear. Utilizing high-precision single-cell RNA sequencing, we profile the normal, eutopic, and ectopic endometrium from 34 individuals across proliferative and secretory phases. We observe an increased proportion of ciliated cells in both eutopic and ectopic endometrium, characterized by a diminished expression of estrogen sulfotransferase, which likely confers apoptosis resistance. After translocating to ectopic lesions, endometrial epithelium upregulates nicotinamide N-methyltransferase expression that inhibits apoptosis by promoting deacetylation and subsequent nuclear exclusion of transcription factor forkhead box protein O1, thereby leading to the downregulation of the apoptotic gene BIM. Moreover, epithelial cells in ectopic lesions elevate HLA class II complex expression, which stimulates CD4+ T cells and consequently contributes to chronic inflammation. Altogether, our study provides a comprehensive atlas of ovarian endometriosis and highlights potential therapeutic targets for modulating apoptosis and inflammation.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/patologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Endométrio/metabolismo , Análise de Célula Única , Inflamação/patologia
12.
Protein Cell ; 15(4): 285-304, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345888

RESUMO

Colorectal cancer (CRC) is a highly heterogeneous cancer and exploring novel therapeutic options is a pressing issue that needs to be addressed. Here, we established human CRC tumor-derived organoids that well represent both morphological and molecular heterogeneities of original tumors. To efficiently identify repurposed drugs for CRC, we developed a robust organoid-based drug screening system. By combining the repurposed drug library and computation-based drug prediction, 335 drugs were tested and 34 drugs with anti-CRC effects were identified. More importantly, we conducted a detailed transcriptome analysis of drug responses and divided the drug response signatures into five representative patterns: differentiation induction, growth inhibition, metabolism inhibition, immune response promotion, and cell cycle inhibition. The anticancer activities of drug candidates were further validated in the established patient-derived organoids-based xenograft (PDOX) system in vivo. We found that fedratinib, trametinib, and bortezomib exhibited effective anticancer effects. Furthermore, the concordance and discordance of drug response signatures between organoids in vitro and pairwise PDOX in vivo were evaluated. Our study offers an innovative approach for drug discovery, and the representative transcriptome features of drug responses provide valuable resources for developing novel clinical treatments for CRC.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Detecção Precoce de Câncer , Organoides/patologia
13.
Cell Prolif ; 57(3): e13557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37766635

RESUMO

Hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease, which can cause heart failure and lead to death. In this study, we performed high-resolution single-cell RNA-sequencing of 2115 individual cardiomyocytes obtained from HCM patients and normal controls. Signature up- and down-regulated genes in HCM were identified by integrative analysis across 37 patients and 41 controls from our data and published human single-cell and single-nucleus RNA-seq datasets, which were further classified into gene modules by single-cell co-expression analysis. Using our high-resolution dataset, we also investigated the heterogeneity among individual cardiomyocytes and revealed five distinct clusters within HCM cardiomyocytes. Interestingly, we showed that some extracellular matrix (ECM) genes were up-regulated in the HCM cardiomyocytes, suggesting that they play a role in cardiac remodelling. Taken together, our study comprehensively profiled the transcriptomic programs of HCM cardiomyocytes and provided insights into molecular mechanisms underlying the pathogenesis of HCM.


Assuntos
Cardiomiopatia Hipertrófica , Miócitos Cardíacos , Humanos , Perfilação da Expressão Gênica , Transcriptoma/genética , Cardiomiopatia Hipertrófica/genética , RNA-Seq
16.
Nat Methods ; 20(10): 1493-1505, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640936

RESUMO

The high-order three-dimensional (3D) organization of regulatory genomic elements provides a topological basis for gene regulation, but it remains unclear how multiple regulatory elements across the mammalian genome interact within an individual cell. To address this, herein, we developed scNanoHi-C, which applies Nanopore long-read sequencing to explore genome-wide proximal high-order chromatin contacts within individual cells. We show that scNanoHi-C can reliably and effectively profile 3D chromatin structures and distinguish structure subtypes among individual cells. This method could also be used to detect genomic variations, including copy-number variations and structural variations, as well as to scaffold the de novo assembly of single-cell genomes. Notably, our results suggest that extensive high-order chromatin structures exist in active chromatin regions across the genome, and multiway interactions between enhancers and their target promoters were systematically identified within individual cells. Altogether, scNanoHi-C offers new opportunities to investigate high-order 3D genome structures at the single-cell level.

17.
Protein Cell ; 14(6): 433-447, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37402315

RESUMO

Molecular knowledge of human gastric corpus epithelium remains incomplete. Here, by integrated analyses using single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) techniques, we uncovered the spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium. Specifically, we identified a stem/progenitor cell population in the isthmus of human gastric corpus, where EGF and WNT signaling pathways were activated. Meanwhile, LGR4, but not LGR5, was responsible for the activation of WNT signaling pathway. Importantly, FABP5 and NME1 were identified and validated as crucial for both normal gastric stem/progenitor cells and gastric cancer cells. Finally, we explored the epigenetic regulation of critical genes for gastric corpus epithelium at chromatin state level, and identified several important cell-type-specific transcription factors. In summary, our work provides novel insights to systematically understand the cellular diversity and homeostasis of human gastric corpus epithelium in vivo.


Assuntos
Epigênese Genética , Mucosa Gástrica , Humanos , Mucosa Gástrica/metabolismo , Cromatina/metabolismo , Células-Tronco , Epitélio/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo
18.
Natl Sci Rev ; 10(6): nwad094, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37347037

RESUMO

Human gastric cancer is a highly lethal disease, but the underlying multiomic molecular signatures remain largely unclear. Here, we performed multi-regional sampling, parallel single-cell multiomics sequencing and integrated analyses of human gastric cancer. We identified common transcriptomic alterations of gastric cancer cells, such as aberrant down-regulation of genes associated with normal stomach function and up-regulation of KRT7, PI3, S100A4, etc. Surprisingly, aberrant and prevalent up-regulation of genes highly expressed in normal colorectal epithelial cells were also identified in cancer cells, which may be partially regulated by promoter chromatin accessibility and DNA methylation levels. We revealed the single-cell DNA methylome landscape of gastric cancer, and identified candidate DNA methylation biomarkers, such as hypermethylated promoters of TMEM240 and HAGLROS, and hypomethylated promoters of TRPM2-AS and HRH1. Additionally, the relationships between genetic lineages, DNA methylation and transcriptomic clusters were systematically revealed at single-cell level. We showed that DNA methylation heterogeneities were mainly among different genetic lineages of cancer cells. Moreover, we found that DNA methylation levels of cancer cells with poorer differentiation states tend to be higher than those of cancer cells with better differentiation states in the primary tumor within the same patient, although still lower than in normal gastric epithelial cells. Cancer cells with poorer differentiation states also prevalently down-regulated MUC1 expression and immune-related pathways, and had poor infiltration of CD8+ T cells. Our study dissected the molecular signatures of intratumoral heterogeneities and differentiation states of human gastric cancer using integrative single-cell multiomics analyses.

19.
Nucleic Acids Res ; 51(15): 8020-8034, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37351613

RESUMO

Although localized haploid phasing can be achieved using long read genome sequencing without parental data, reliable chromosome-scale phasing remains a great challenge. Given that sperm is a natural haploid cell, single-sperm genome sequencing can provide a chromosome-wide phase signal. Due to the limitation of read length, current short-read-based single-sperm genome sequencing methods can only achieve SNP haplotyping and come with difficulties in detecting and haplotyping structural variations (SVs) in complex genomic regions. To overcome these limitations, we developed a long-read-based single-sperm genome sequencing method and a corresponding data analysis pipeline that can accurately identify crossover events and chromosomal level aneuploidies in single sperm and efficiently detect SVs within individual sperm cells. Importantly, without parental genome information, our method can accurately conduct de novo phasing of heterozygous SVs as well as SNPs from male individuals at the whole chromosome scale. The accuracy for phasing of SVs was as high as 98.59% using 100 single sperm cells, and the accuracy for phasing of SNPs was as high as 99.95%. Additionally, our method reliably enabled deduction of the repeat expansions of haplotype-resolved STRs/VNTRs in single sperm cells. Our method provides a new opportunity for studying haplotype-related genetics in mammals.


Assuntos
Polimorfismo de Nucleotídeo Único , Sêmen , Animais , Masculino , Humanos , Haplótipos , Cromossomos , Espermatozoides , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Humano , Análise de Sequência de DNA/métodos , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA