RESUMO
Introduction: Systemic lupus erythematosus (SLE) is a prototypic autoimmune disorder with a variable clinical course, ranging from mild to severe forms. It mainly occurs in women, especially those of fertile age. The aim of the study was to systematically analyze the associations of perinatal disease activity with adverse outcomes of Chinese patients with SLE and their offspring. Material and methods: Data of prenatal SLE patients and healthy pregnant woman admitted to our hospital during the period October 2001 to January 2018 were retrospectively collected, and the status of offspring of SLE patients was followed up in March 2020. Disease activity was evaluated by SLE disease activity index 2000 (SLEDAI-2k), and those with scores > 6 were defined as having active disease. Results: In total, 198 deliveries of 194 SLE patients and 199 deliveries of healthy women were documented. Maternal and fetal adverse outcomes occurred in 74 (37.4%) and 90 (45.5%) deliveries of SLE patients, respectively, which were significantly higher than those of healthy subjects. Among SLE patients, the active group had higher rates of gestational hypertension (p < 0.001), preeclampsia/eclampsia (p < 0.001), low birth weight (p < 0.001), premature birth (p < 0.001) and fetal growth restriction (FGR) (p < 0.01) than the inactive group. Multivariate logistic analysis revealed that perinatal renal activity was associated with gestational hypertension (OR = 4.43, p < 0.001), preeclampsia/ eclampsia (OR = 9.14, p < 0.001), low birth weight (OR = 2.24, p < 0.05) and premature birth (OR = 4.20, p < 0.001). Compared with the general population, offspring of SLE patients had relatively high rates of eczema (50/142, 35.2%) and congenital heart disease (6/142, 4.2%), which were irrelevant to perinatal disease activity, but related to specific antibodies. Conclusions: For perinatal women with SLE, renal activity is associated with a variety of adverse pregnancy outcomes. However, maternal perinatal disease activity does not seem to affect the growth of their offspring.
RESUMO
BACKGROUND: Subcutaneous Sweet Syndrome (SSS) is a rare variant of Sweet Syndrome characterized by neutrophilic infiltration of subcutaneous adipose tissue without vasculitis. The presence of vasculitis in SSS is uncommon and poses diagnostic challenges. CASE PRESENTATION: A 38-year-old female presented with a one-year history of recurrent painful erythematous nodules on her limbs and face. Physical examination revealed asymmetrical erythematous patches and tender subcutaneous nodules with central necrotic eschars on the lower limbs. Laboratory tests were unremarkable except for a mildly elevated erythrocyte sedimentation rate. Histopathological analysis showed significant neutrophilic infiltration within the adipose lobules and vascular walls, along with extravasation of red blood cells, indicating vasculitis. The patient responded promptly to systemic corticosteroids; however, symptoms recurred upon tapering, necessitating ongoing steroid therapy. DISCUSSION: This case underscores the rare occurrence of vasculitis in SSS, expanding the histopathological spectrum of the disease. Literature review suggests that vasculitis in SSS may result from neutrophil-mediated vascular damage rather than immune complex deposition. The recurrent symptoms upon steroid tapering highlight the therapeutic challenges in managing SSS with vasculitis. CONCLUSION: Recognition of vasculitis in SSS is crucial for accurate diagnosis and effective management. Further research is warranted to elucidate the pathogenesis and develop targeted treatment strategies for SSS with vasculitis.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Codonopsis pilosula (C. pilosula), commonly known as Dangshen in Chinese, had been used to regulate the immune, digestive, and circulatory systems of human. The reported pharmacokinetic studies on C. pilosula are mainly limited to in vivo profile studies of a single component. It has not been detected simultaneously the in vivo pharmacokinetic profiles of multiple active components as well as related gender difference after oral dosing of the extraction of C. pilosula. AIM OF THE STUDY: This study aims to reveal the pharmacokinetic characteristics of the four main active components of C. pilosula after oral dosing of its extraction in rats, and to explain the gender differences in absorption and metabolism. MATERIALS AND METHODS: The plasma pharmacokinetic characteristics of four main active components of C. pilosula was explored using the established LC-MS/MS method after oral dosing of the extraction of C. pilosula in male and female rats. In vitro intestinal pouch permeability and liver microsome metabolic stability were also observed to classify the possible mechanism of gender difference existed in the pharmacokinetic profiles of the four active components in rats. RESULTS: Four effective components were absorbed quickly in rats after oral administration of alcoholic extract of C. pilosula (1.36 g/mL, equivalent to 2 g/mL as crude drug), and their exposure order was as follows: Atractylenolide III > Lobetyolin > Tangshenoside I > Syringin. The exposure (AUC) and peak concentration (Cmax) of Atractylenolide III in female rats were much higher than those in male rats, indicating a significant gender difference in pharmacokinetics of Atractylenolide III between female and male animals. With the help of the rat model of intestinal sac in vitro, it was found that Lobetyolin was a hypertonic compound, and both Tangshenoside I and Syringin were compounds with medium permeabiltiy. Notably, the Papp of Atractylenolide III was 3.3 × 10-6 cm/s in male rat intestinal sac assay, while that was 10 × 10-6 cm/s in female rat intestinal sac model, showing a significant gender difference in intestinal permeability (P < 0.05). After the addition of NADPH, the four compounds were reduced in a time-dependent manner, suggesting that CYP450s could catalyze their metabolism. After incubation, the remaining content of Atractylenolide III in the liver microsomes of male and female rats was 27% and 57%, respectively, suggesting slower metabolic rate of in female rat liver microsomes. CONCLUSION: A simple, efficient and reliable LC-MS/MS method for the simultaneous determination of four active index components of C. pilosula, Lobetyolin, Tangshenoside I, Atractylenolide III and Syringin, in rat plasma was established and verified. This method was successfully applied in the pharmacokinetic study after single oral administration of the alcoholic extract of C. pilosula in rats. Gender difference was observed in the pharmacokinetic profile of Atractylenolide III in rats. Intestinal absorption and liver metabolism might be two key factors that resulted in the gender difference in exposure and pharmacokinetics of Atractylenolide III in rats. This study provides supportive data for clinical rational application of C. pilosula in individualized medication therapy.
RESUMO
Based on the environmental monitoring data and meteorological observational data in Hainan Island from 2015 to 2021, the PM2.5-polluted characteristics, influencing factors, and potential contributing regions were analyzed using the backward trajectory simulation, cluster analysis, potential source analysis function ï¼PSCFï¼, and concentration weight trajectory ï¼CWTï¼ methods. The results showed that PM2.5 in Hainan Island had an obvious seasonal variation, with the highest in winter ï¼22.6 µg·m-3ï¼, followed by that in autumn and spring ï¼17.38 and 16.53 µg·m-3, respectivelyï¼, with the lowest in summer ï¼9.79 µg·m-3ï¼. In the past seven years, there were 30 days in Hainan Island in which PM2.5 concentration exceeded the standard. The annual average and four seasons of PM2.5 showed a significant downward trend, and the climatic change rates were -0.97 ï¼annual meanï¼, -1.09 ï¼springï¼, -0.61 ï¼summerï¼, -0.83 ï¼autumnï¼, and -1.25 ï¼winterï¼ µg·ï¼m3·aï¼-1. PM2.5 in Hainan Island was highly correlated with gaseous pollutants, with correlation coefficients of 0.471 ï¼SO2ï¼, 0.633 ï¼NO2ï¼, 0.479 ï¼COï¼, and 0.773 ï¼O3-8hï¼, all passing a significance level of 0.01. PM2.5 was positively correlated with average wind speed and atmospheric pressure and negatively correlated with precipitation, relative humidity, sunshine duration, average temperature, and total solar radiation. Among them, average temperature, relative humidity, and total solar radiation were the main dominant meteorological factors on PM2.5 in Hainan Island. Backward trajectory and potential source analysis revealed that PM2.5 concentration was high ï¼≥20 µg·m-3ï¼ in winter and autumn, which was influenced by airflow from inland regions, and Fujian, Zhejiang, Hunan, Jiangxi, Guangdong, and Guangxi provinces were the main potential sources of PM2.5 in Hainan Island.
RESUMO
OBJECTIVES: To investigate how maternal MTR gene polymorphisms and their interactions with periconceptional folic acid supplementation are associated with the incidence of ventricular septal defects (VSD) in offspring. METHODS: A case-control study was conducted, recruiting 426 mothers of infants with VSD under one year old and 740 mothers of age-matched healthy infants. A questionnaire survey collected data on maternal exposures, and blood samples were analyzed for genetic polymorphisms. Multivariable logistic regression analysis and inverse probability of treatment weighting were used to analyze the associations between genetic loci and VSD. Crossover analysis and logistic regression were utilized to examine the additive and multiplicative interactions between the loci and folic acid intake. RESULTS: The CT and TT genotypes of the maternal MTR gene at rs6668344 increased the susceptibility of offspring to VSD (P<0.05). The GC and CC genotypes at rs3768139, AG and GG at rs1050993, AT and TT at rs4659743, GG at rs3768142, and GT and TT at rs3820571 were associated with a decreased risk of VSD (P<0.05). The variations at rs6668344 demonstrated an antagonistic multiplicative interaction with folic acid supplementation in relation to VSD (P<0.05). CONCLUSIONS: Maternal MTR gene polymorphisms significantly correlate with the incidence of VSD in offspring. Mothers with variations at rs6668344 can decrease the susceptibility to VSD in their offspring by supplementing with folic acid during the periconceptional period, suggesting the importance of periconceptional folic acid supplementation in genetically at-risk populations to prevent VSD in offspring.
Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Suplementos Nutricionais , Ácido Fólico , Comunicação Interventricular , Humanos , Ácido Fólico/administração & dosagem , Feminino , Comunicação Interventricular/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Estudos de Casos e Controles , Lactente , Adulto , Gravidez , Polimorfismo Genético , Masculino , Polimorfismo de Nucleotídeo ÚnicoRESUMO
WHO classified Helicobacter pylori as a Group I carcinogen for gastric cancer as early as 1994. However, despite the high prevalence of H. pylori infection, only about 3 % of infected individuals eventually develop gastric cancer, with the highly virulent H. pylori strains expressing cytotoxin-associated protein (CagA) and vacuolating cytotoxin (VacA) being critical factors in gastric carcinogenesis. It is well known that H. pylori infection is divided into two types in terms of the presence and absence of CagA and VacA toxins in serum, that is, carcinogenic Type I infection (CagA+/VacA+, CagA+/VacA-, CagA-/VacA+) and non-carcinogenic Type II infection (CagA-/VacA-). Currently, detecting the two carcinogenic toxins in active modes is mainly done by diagnosing their serological antibodies. However, the method is restricted by expensive reagents and intricate procedures. Therefore, establishing a rapid, accurate, and cost-effective way for serological profiling of carcinogenic H. pylori infection holds significant implications for effectively guiding H. pylori eradication and gastric cancer prevention. In this study, we developed a novel method by combining surface-enhanced Raman spectroscopy with the deep learning algorithm convolutional neural network to create a model for distinguishing between serum samples with Type I and Type II H. pylori infections. This method holds the potential to facilitate rapid screening of H. pylori infections with high risks of carcinogenesis at the population level, which can have long-term benefits in reducing gastric cancer incidence when used for guiding the eradication of H. pylori infections.
RESUMO
Klebsiella pneumoniae is one of the most common causes of hospital-acquired infections, especially due to the emergence of the hypervirulent K. pneumoniae (hvKp) strains. Multiple methods have been developed to discriminate hvKp strains from classical K. pneumoniae (cKp) strains, such as the presence of candidate genes (e.g., peg-344, iroB, and iucA), high level of siderophore production, hypermucoviscosity phenotype, etc. Although the string test is commonly used to confirm the hypermucoviscosity of K. pneumoniae strains, it is a method lacking rigidity and accuracy. Surface-enhanced Raman spectroscopy (SERS) coupled with machine learning algorithms has been widely used in discriminating bacterial pathogens with different phenotypes. However, the technique has not be applied to identify hypermucoviscous K. pneumoniae (hmvKp) strains. In this study, we isolated a set of K. pneumoniae strains from clinical samples, among which hmvKp strains (N = 10) and cKP strains (N = 10) were randomly selected to collect SESR spectra. Eight machine learning algorithms were recruited for model construction and spectral prediction in this study, among which support vector machine (SVM) outperforms all other algorithms with the highest prediction accuracy of hmvKp strains (5-fold cross validation = 99.07%). Taken together, this pilot study confirms that SERS, combined with machine learning algorithms, can accurately identify hmvKp strains, which can facilitate the fast recognition of hvKP strains when combined with relevant methods and biomarkers in clinical settings in the near future.
RESUMO
Insulin resistance (IR) is the major mechanism in the pathogenesis of type 2 diabetes mellitus (T2DM). Early identification of IR is of great significance for preventing the onset of T2DM and delaying the progression of the disease. Previous studies have shown that triglyceride-glucose (TyG) index can be used as an effective surrogate marker for IR. There is a significant correlation between TyG index and T2DM and its common complications. In addition, the predictive efficacy of TyG index is better than that of other IR surrogate indicators. TyG index may not only become an important marker to identify people at high risk of T2DM and its complications, but is also expected to become a strong predictor of the prognosis of these diseases. However, there are still some challenges in the widespread application of TyG index in clinical practice. In the future, more high-quality studies are needed to clarify the assessment methods of TyG index for the prognosis of T2DM and its complications. Further investigations of the relationship between TyG index and T2DM and its complications will be expected to provide new ideas and methods for the prevention and treatment of T2DM and its complications.
RESUMO
Colon adenocarcinoma (COAD) is one of the most common types of cancer. The interconnection between non-apoptotic cell death and COAD has not been adequately addressed. In our study, an integrative bioinformatics analysis was performed to explore non-apoptotic cell death-related biomarkers in COAD. ENO2 was determined as a potent biomarker for prognosis, drug response, immunity, and immunotherapy prediction. We used EdU and RT-qPCR assays to test our hypothesis and investigate how the ENO2 gene may influence or regulate cancer-related processes. ENO2 was expected to be a potential target in COAD.
Assuntos
Antineoplásicos Fitogênicos , Camptotheca , Camptotecina , Espécies em Perigo de Extinção , Magnoliopsida , Humanos , Antineoplásicos Fitogênicos/isolamento & purificação , Ásia , Árvores/química , Camptotheca/química , Magnoliopsida/química , Camptotecina/isolamento & purificação , Melhoramento VegetalRESUMO
OBJECTIVE: This study aimed to investigate the genetic etiology of male infertility patients. METHOD: A total of 1600 male patients with infertility, including 1300 cases of azoospermia and 300 cases of severe oligozoospermia, underwent routine semen analysis, chromosomal karyotype analysis and sex hormone level testing. The Azoospermia factor (AZF) on the Y chromosome was detected using the multiple fluorescence quantitative PCR technique. Additionally, copy number variation (CNV) analysis was performed on patients with Sertoli-cell-only syndrome who had a normal karyotype and AZF. RESULT: Chromosomal abnormalities were found in 334 cases (20.88 %) of the 1600 male infertility patients. The most common type of abnormality was sex chromosome abnormalities (18.94 %), with 47, XXY being the most frequent abnormal karyotype. The rates of chromosomal abnormalities were significantly different between the azoospermia group and the severe oligospermia group (23.69 % and 8.67 %, respectively; P<0.05). AZF microdeletions were detected in 155 cases (9.69 %), with various deletion types and AZFc region microdeletion being the most prevalent. The rates of AZF microdeletions were not significantly different between the azoospermia group and the severe oligospermia group (9.15 % and 12 %, respectively; P=0.133). In 92 patients with Sertoli-cell-only syndrome who had a normal karyotype and AZF, the detection rate of CNV was 16.3 %. Compared to the severe oligospermia group, the azoospermia group had higher levels of FSH and LH and lower levels of T and E2, and the differences were statistically significant (P<0.05). CONCLUSIONS: Male infertility is a complex multifactorial disease, with chromosomal abnormalities and Y chromosome microdeletions being important genetic factors leading to the disease. Initial genetic testing of infertile men should include karyotyping and Y chromosome microdeletions. If necessary, CNV testing should be performed to establish a clinical diagnosis and provide individualized treatment for male infertility.
RESUMO
OBJECTIVE: To investigate the incremental value of pericoronary fat attenuation index (FAI) in routine coronary artery computed tomography angiography (CCTA) to identify culprit lesions in acute coronary syndrome (ACS). METHODS: We reviewed the CCTA data from 80 ACS patients and 40 individuals with stable coronary atherosclerosis. ACS patient plaques were categorized into culprit and nonculprit groups. The plaque-specific pericoronary FAI was assessed using the Perivascular Fat Analysis Tool. We applied a default prespecified window of -190 to -30 Hounsfield units (HU) and a broader prespecified window of -190 to 20 HU. FAI values within these prespecified windows and the types and severity of plaque stenosis were compared across the 3 groups. Additionally, we investigated high-risk characteristics of plaques in the ACS group and their correlation with FAI. The effectiveness and worthiness of FAI in identifying culprit lesions were analyzed based on the receiver operating characteristic curve. RESULTS: The FAI values under the 2 prespecified windows were higher in the culprit group than in the nonculprit and control groups (all P < 0.001). The culprit group showed the most mixed plaques and the most severe stenosis (all P < 0.001). In the ACS group, the FAI value was significantly lower around calcified lesions (-85.00 ± 9.97 HU) than around noncalcified (-78.00 ± 11.52 HU) and mixed plaques (-78.00 ± 9.24 HU) (both P < 0.001). The culprit group had more high-risk plaques, and high-risk plaques had higher FAI values than those without high-risk characteristics (-70.00 ± 7.67 HU vs -82.00 ± 10.16 HU, P < 0.001). The efficacy of FAI under the default prespecified window in identifying culprit lesions was higher compared than that under the broader prespecified window (area under the curve = 0.799 vs 0.761, P = 0.042), and the diagnostic cutoff values were -77 versus -58 HU. The FAI under the default prespecified window exhibited an incremental value for identifying culprit lesions, as compared with stenosis severity (area under the curve = 0.970 vs 0.939, P < 0.001). CONCLUSION: The culprit lesions have higher FAI than the nonculprit lesions and the controls. FAI is a worthy parameter for identifying culprit lesions in routine CCTA according to stenosis severity, and the default prespecified window is a better option.
RESUMO
Ophiocordyceps sinensis is a genus of ascomycete fungi that has been widely used as a valuable tonic or medicine. However, due to over-exploitation and the destruction of natural ecosystems, the shortage of wild O. sinensis resources has led to an increase in artificially cultivated O. sinensis. To rapidly and accurately identify the molecular differences between cultivated and wild O. sinensis, this study employs surface-enhanced Raman spectroscopy (SERS) combined with machine learning algorithms to distinguish the two O. sinensis categories. Specifically, we collected SERS spectra for wild and cultivated O. sinensis and validated the metabolic profiles of SERS spectra using Ultra-Performance Liquid Chromatography coupled with Orbitrap High-Resolution Mass Spectrometry (UPLC-Orbitrap-HRMS). Subsequently, we constructed machine learning classifiers to mine potential information from the spectral data, and the spectral feature importance map is determined through an optimized algorithm. The results indicate that the representative characteristic peaks in the SERS spectra are consistent with the metabolites identified through metabolomics analysis, confirming the feasibility of the SERS method. The optimized support vector machine (SVM) model achieved the most accurate and efficient capacity in discriminating between wild and cultivated O. sinensis (accuracy = 98.95%, 5-fold cross-validation = 98.38%, time = 0.89s). The spectral feature importance map revealed subtle compositional differences between wild and cultivated O. sinensis. Taken together, these results are expected to enable the application of SERS in the quality control of O. sinensis raw materials, providing a foundation for the efficient and rapid identification of their quality and origin.
RESUMO
Increasing evidence shows the potential threat of gill rot in freshwater fish culture. F. columnare is wide-spread in aquatic environments, which can cause fish gill rot and result in high mortality and losses of fish. This study investigated the effects of myo-inositol (MI) on the proliferation, structural integrity, and different death modes of grass carp (Ctenopharyngodon idella) gill epithelial cells, as well as its possible mechanism. 30 mg/L MI up-regulated CCK8 OD value and the protein level of solute carrier family 5A 3 (SLC5A3), and down-regulated the reactive oxygen species (ROS) content in gill cells and lactate dehydrogenase (LDH) release in the culture medium (P < 0.05). MI up-regulated the protein level of Beclin1, the protein level and fluorescence expression of microtubule-associated protein light chain 3B (LC3B) and down-regulated the protein level of sequestosome-1 (SQSTM1, also called p62) (P < 0.05). MI down-regulated the protein levels of Cysteine aspartate protease-1 (caspase-1), Gasdermin E (GSDME) and Cleaved interleukin 1 beta (IL-1ß) (P < 0.05). MI up-regulated the protein level of caspase-8 (P < 0.05), but had no effect on apoptosis (P > 0.05). MI down-regulated the mRNA expressions and protein levels of tumor necrosis factor α (tnfα), TNF receptor 1 (tnfr1), receptor interacting protein 1 (ripk1), receptor interacting protein 3 (ripk3) and mixed lineage kinase domain-like protein (mlkl), and reduce the ratio of p-MLKL/MLKL (P < 0.05). The addition of MI or necrosulfonamide (NSA) alone, or the addition of MI after induction of necroptosis, significantly up-regulated the cell activity and the protein level of SLC5A3 in gill cells, and significantly reduced the LDH release in the culture medium and the intracellular ROS content, the number of necroptosis cells, the protein expression of TNFα, TNFR1 and RIPK1, and the ratio of p-RIPK3/RIPK3 and p-MLKL/MLKL (P < 0.05). It indicated MI induce autophagy may relate to Beclin1/LC3/p62 signaling pathway, inhibits pyroptosis may attribute to Caspase-1/GSDMD/IL-1ß signaling pathway, and inhibits necroptosis via MLKL signaling pathway. However, MI had no effect on apoptosis.
Assuntos
Carpas , Doenças dos Peixes , Brânquias , Inositol , Animais , Carpas/imunologia , Brânquias/efeitos dos fármacos , Doenças dos Peixes/imunologia , Inositol/farmacologia , Morte Celular/efeitos dos fármacos , Proteínas de Peixes/genéticaRESUMO
OBJECTIVE: This study aimed to evaluate the current situation of Chinese mobile apps for hypertension management and explore patients' real requirements for app use, providing a theoretical basis for the future improvement of hypertension apps. METHODS: We reviewed hypertension management apps from mobile app platforms, and summarized their functional characteristics. In addition, we conducted an online survey among 1000 hypertensive patients, collected valid responses, and analyzed the feedback data. RESULTS: Forty hypertension management apps were analyzed, with 72.5% offering no more than six functions, indicating limited coverage of advanced and comprehensive functionalities. Among the 934 valid survey responses, patients emphasized four main functions in apps for hypertension management: long-term dynamic blood pressure monitoring, scientific lifestyle management, strict medication management and systematic health knowledge delivering. CONCLUSION: The existing hypertension management apps mainly serve as "Digital Health" tools with unclear clinical efficacy. The future development of these apps lies in how they transition to "Digital Therapeutics" solutions to better meet patients' needs and provide clear clinical advantages.
Assuntos
Hipertensão , Aplicativos Móveis , Humanos , China , Gerenciamento Clínico , Hipertensão/terapia , Aplicativos Móveis/tendências , Aplicativos Móveis/estatística & dados numéricos , Inquéritos e Questionários , Telemedicina/tendênciasRESUMO
Xenotropic and polytropic retrovirus receptor 1 (XPR1) is the only known transporter associated with Pi efflux in mammals, and its impact on tumor progression is gradually being revealed. However, the role of XPR1 in hepatocellular carcinoma (HCC) is unknown. A bioinformatics screen for the phosphate exporter XPR1 was performed in HCC patients. The expression of XPR1 in clinical specimens was analyzed using quantitative real-time PCR, Western blot analysis, and immunohistochemical assays. Knockdown of the phosphate exporter XPR1 was performed by shRNA transfection to investigate the cellular phenotype and phosphate-related cytotoxicity of the Huh7 and HLF cell lines. In vivo tests were conducted to investigate the tumorigenicity of HCC cells xenografted into immunocompromised mice after silencing XPR1. Compared with that in paracancerous tissue, XPR1 expression in HCC tissues was markedly upregulated. High XPR1 expression significantly correlated with poor patient survival. Silencing of XPR1 leads to decreased proliferation, migration, invasion, and colony formation in HCC cells. Mechanistically, knockdown of XPR1 causes an increase in intracellular phosphate levels; mitochondrial dysfunction characterized by reduced mitochondrial membrane potential and adenosine triphosphate levels; increased reactive oxygen species levels; abnormal mitochondrial morphology; and downregulation of key mitochondrial fusion, fission, and inner membrane genes. This ultimately results in mitochondria-dependent apoptosis. These findings reveal the prognostic value of XPR1 in HCC progression and, more importantly, suggest that XPR1 might be a potential therapeutic target.
RESUMO
Objective: Primary Sjögren's syndrome (pSS) is a systemic autoimmune disorder with an unclear pathogenetic mechanism in the labial gland. This study aims to investigate the cellular and molecular mechanisms contributing to the development of this disease. Methods: Single-cell RNA sequencing (scRNA-seq) was performed on 32,337 cells of labial glands from three pSS patients and three healthy individuals. We analyzed all cell subsets implicated in pSS pathogenesis. Results: Our research revealed diminished differentiation among epithelial cells, concomitant with an enhancement of interferons (IFNs)-mediated signaling pathways. This indicates a cellular functional shift in reaction to inflammatory triggers. Moreover, we observed an augmentation in the population of myofibroblasts and endothelial cells, likely due to the intensified IFNs signaling, suggesting a possible reconfiguration of tissue structure and vascular networks in the impacted regions. Within the immune landscape, there was an apparent increase in immunosuppressive macrophages and dendritic cells (DCs), pointing to an adaptive immune mechanism aimed at modulating inflammation and averting excessive tissue harm. Elevated activation levels of CD4+T cells, along with a rise in regulatory T (Treg) cells, were noted, indicating a nuanced immune interplay designed to manage the inflammatory response. In the CD8+T cell subsests, we detected a notable increase in cells expressing granzyme K (GZMK), signaling an intensified cytotoxic activity. Additionally, the escalated presence of T cells with high levels of heat shock proteins (HSPs) suggests a cellular stress condition, possibly associated with persistent low-grade inflammation, mirroring the chronic aspect of the condition. Conclusions: Our research identified distinct stromal and immune cell populations linked to pSS, revealing new potential targets for its management. The activation of myeloid, B, and T cells could contribute to pSS pathogenesis, providing important guidance for therapeutic approaches.
RESUMO
Objective: Vasculogenic mimicry (VM) is a novel vasculogenic process integral to glioma stem cells (GSCs) in glioblastoma (GBM). However, the relationship between VM and ataxia-telangiectasia mutated (ATM) serine/threonine kinase activation, which confers chemoradiotherapy resistance, remains unclear. Methods: We investigated VM formation and phosphorylated ATM (pATM) levels by CD31/GFAP-periodic acid-Schiff dual staining and immunohistochemical staining in 145 GBM specimens. Glioma stem-like cells (GSLCs) derived from the formatted spheres of U87 and U251 cell lines and their pATM level and VM formation ability were examined using western blot and three-dimensional culture. For the examination of the function of pATM in VM formation by GSLCs, ATM knockdown by shRNAs and deactivated via ATM phosphorylation inhibitor KU55933 were studied. Results: VM and high pATM expression occurred in 38.5% and 41.8% of tumors, respectively, and were significantly associated with reduced progression-free and overall survival. Patients with VM-positive GBMs exhibited higher pATM levels ( r s = 0.425, P = 0.01). The multivariate analysis established VM as an independent negative prognostic factor ( P = 0.002). Furthermore, GSLCs expressed high levels of pATM and formed vascular-like networks in vitro. ATM inactivation or knockdown hindered VM-like network formation concomitant with the downregulation of pVEGFR-2, VE-cadherin, and laminin B2. Conclusion: VM may predict a poor GBM prognosis and is associated with pATM expression. We propose that pATM promotes VM through extracellular matrix modulation and VE-Cadherin / pVEGFR-2 activation, thereby highlighting ATM activation as a potential target for enhancing anti-angiogenesis therapies for GBM.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Glioma , Células-Tronco Neoplásicas , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Células-Tronco Neoplásicas/metabolismo , Glioma/metabolismo , Glioma/patologia , Glioma/irrigação sanguínea , Linhagem Celular Tumoral , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neovascularização Patológica/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/irrigação sanguínea , Adulto , IdosoRESUMO
The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
RESUMO
Background: Unbalanced inflammatory response is a critical feature of sepsis, a life-threatening condition with significant global health burdens. Immune dysfunction, particularly that involving different immune cells in peripheral blood, plays a crucial pathophysiological role and shows early warning signs in sepsis. The objective is to explore the relationship between sepsis and immune subpopulations in peripheral blood, and to identify patients with a higher risk of 28-day mortality based on immunological subtypes with machine-learning (ML) model. Methods: Patients were enrolled according to the sepsis-3 criteria in this retrospective observational study, along with age- and sex-matched healthy controls (HCs). Data on clinical characteristics, laboratory tests, and lymphocyte immunophenotyping were collected. XGBoost and k-means clustering as ML approaches, were employed to analyze the immune profiles and stratify septic patients based on their immunological subtypes. Cox regression survival analysis was used to identify potential biomarkers and to assess their association with 28-day mortality. The accuracy of biomarkers for mortality was determined by the area under the receiver operating characteristic (ROC) curve (AUC) analysis. Results: The study enrolled 100 septic patients and 89 HCs, revealing distinct lymphocyte profiles between the two groups. The XGBoost model discriminated sepsis from HCs with an area under the receiver operating characteristic curve of 1.0 and 0.99 in the training and testing set, respectively. Within the model, the top three highest important contributions were the percentage of CD38+CD8+T cells, PD-1+NK cells, HLA-DR+CD8+T cells. Two clusters of peripheral immunophenotyping of septic patients by k-means clustering were conducted. Cluster 1 featured higher proportions of PD1+ NK cells, while cluster 2 featured higher proportions of naïve CD4+T cells. Furthermore, the level of PD-1+NK cells was significantly higher in the non-survivors than the survivors (15.1% vs 8.6%, P<0.01). Moreover, the levels of PD1+ NK cells combined with SOFA score showed good performance in predicting the 28-day mortality in sepsis (AUC=0.91,95%CI 0.82-0.99), which is superior to PD1+ NK cells only(AUC=0.69, sensitivity 0.74, specificity 0.64, cut-off value of 11.25%). In the multivariate Cox regression, high expression of PD1+ NK cells proportion was related to 28-day mortality (aHR=1.34, 95%CI 1.19 to 1.50; P<0.001). Conclusion: The study provides novel insights into the association between PD1+NK cell profiles and prognosis of sepsis. Peripheral immunophenotyping could potentially stratify the septic patients and identify those with a high risk of 28-day mortality.