RESUMO
van der Waals ferroelectric CuInP2S6 (CIPS) has drawn significant attention not only because of its unique properties but also owing to its technological potential for nanoelectronics. Mechanical polarization switching provides a new approach to modulating polarization states through flexoelectricity. This approach is particularly favourable for CIPS to avoid surface damage under an electric field due to the coupling between polarization switching and ionic motion. Here, we report anomalous downward-to-upward polarization switching under tip force in CIPS nanoflakes, which is believed to stem from the competition between piezoelectric and flexoelectric fields induced by tip pressure, together with the unique quadruple-well state present in CIPS. This work provides novel insights into the polarization switching mechanism of CIPS, elucidating the interplay between competing piezoelectric and flexoelectric fields, and it may pave the way for the design of electromechanical devices based on flexoelectric engineering.
RESUMO
BACKGROUND: Vascular dysfunction is closely associated with the progression of Alzheimer's disease (AD). A critical research gap exists that no studies have explored the in vivo temporal changes of cerebrovascular alterations with AD progression in mouse models, encompassing both structure and flow dynamics at micron-scale resolution across the early, middle, and late stages of the disease. METHODS: In this study, ultrasound localisation microscopy (ULM) was applied to image the cerebrovascular alterations of the transgenic female 5×FAD mouse model across different stages of disease progression: early (4 months), moderate (7 months), and late (12 months). Age-matched non-transgenic (non-Tg) littermates were used as controls. Immunohistology examinations were performed to evaluate the influence of disease progression on the ß-amyloid (Aß) load and microvascular alterations, including morphological changes and the blood-brain barrier (BBB) leakage. FINDINGS: Our findings revealed a significant decline in both vascular density and flow velocity in the retrosplenial cortex of 5×FAD mice at an early stage, which subsequently became more pronounced in the visual cortex and hippocampus as the disease progressed. Additionally, we observed a reduction in vascular length preceding diminished flow velocities in cortical penetrating arterioles during the early stages. The quantification of vascular metrics derived from ULM imaging showed significant correlations with those obtained from vascular histological images. Immunofluorescence staining identified early vascular abnormalities in the retrosplenial cortex. As the disease advanced, there was an exacerbation of Aß accumulation and BBB disruption in a regionally variable manner. The vascular changes observed through ULM imaging exhibited a negative correlation with amyloid load and were associated with the compromise of the BBB integrity. INTERPRETATION: Through high-resolution, in vivo imaging of cerebrovasculature, this study reveals significant spatiotemporal dysfunction in cerebrovascular dynamics accompanying disease progression in a mouse model of AD, enhancing our understanding of its pathophysiology. FUNDING: This study is supported by grants from National Key Research and Development Program of China (2020YFA0908800), National Natural Science Foundation of China (12074269, 82272014, 82327804, 62071310), Shenzhen Basic Science Research (20220808185138001, JCYJ20220818095612027, JCYJ20210324093006017), STI 2030-Major Projects (2021ZD0200500) and Guangdong Natural Science Foundation (2024A1515012591, 2024A1515011342).
Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Ultrassonografia , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Feminino , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/patologia , Ultrassonografia/métodos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Humanos , Circulação CerebrovascularRESUMO
Electric discharge occurs ubiquitously in both natural and engineered systems, where the discharge paths provide critical information. However, control and visualization of discharge patterns is a challenging task. Here arrays of liquid metal marbles, droplets of a gallium-indium eutectic alloy with a copper-doped ZnS luminescent coating, are designed for pixelated visualization of electric discharge paths at optical imaging length-scales. The ZnS particles embed themselves into the surface of liquid metal droplets and are anchored by a self-limiting gallium oxide layer. The operation is achieved by generating spark discharges at inter-marble air gaps and reduced voltage drop across highly conducting liquid metal droplets. By taking advantage of the malleability of soft liquid metal marbles, the dynamic visualization platforms allow the manipulation of discharge path selections in configurable marble arrays and the embedding of artificial defect features. The systems are further integrated for characterizing dynamic changes in granular and soft systems, and for enabling logic computing and information encoded display. This demonstration holds promises for creating new-generation electric discharge-based optoelectronics.
RESUMO
Ultrasound velocimetry has been widely used for blood flow imaging. However, the flow measurements are constrained to resolve the in-plane 2D flow components when using a 1D transducer array. In this work, an ultrasound speckle decorrelation analysis-based velocimetry (3C-vUS) is proposed for 3D velocity components measurement using a 1D transducer array. The 3C-vUS theory is first derived and validated with numerical simulations and phantom experiments. The in vivo testing results show that 3C-vUS can accurately measure the blood flow 3D-velocity-components of the human carotid artery at arbitrary probe-to-vessel angles throughout the cardiac cycle. With such capability, the 3C-vUS will alleviate the requirement of operators and promote disease screening for blood flow-related disorders.
Assuntos
Artérias Carótidas , Imageamento Tridimensional , Imagens de Fantasmas , Reologia , Transdutores , Ultrassonografia , Humanos , Reologia/métodos , Artérias Carótidas/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Ultrassonografia/instrumentaçãoRESUMO
Microsphere-based embolic agents have gained prominence in transarterial embolization (TAE) treatment, a critical minimally invasive therapy widely applied for a variety of diseases such as hypervascular tumors and acute bleeding. However, the development of microspheres with long-term, real-time, and repeated X-ray imaging as well as ultrasound imaging remains challenging. In this study, emulsion-based dual-modal imaging microbeads with a unique internal multi-interface structure is developed for TAE treatment. The embolic microbeads are fabricated from a solidified oil-in-water (O/W) emulsion composed of crosslinked CaAlg-based aqueous matrix and dispersed radiopaque iodinated oil (IO) droplets through a droplet-based microfluidic fabrication method. The CaAlg-IO microbeads exhibit superior X-ray imaging visibility due to the incorporation of exceptionally high iodine level up to 221 mgI mL-1, excellent ultrasound imaging capability attributed to the multi-interface structure of the O/W emulsion, great microcatheter deliverability thanks to their appropriate biomechanical properties and optimal microbead density, and extended drug release behavior owing to the biodegradation nature of the embolics. Such an embolic agent presents a promising emulsion-based platform to utilize multi-phased structures for improving endovascular embolization performance and assessment capabilities.
Assuntos
Embolização Terapêutica , Emulsões , Microesferas , Embolização Terapêutica/métodos , Emulsões/química , Animais , Ultrassonografia/métodosRESUMO
Copper-based catalysts exhibit high activity in electrochemical CO2 conversion to value-added chemicals. However, achieving precise control over catalysts design to generate narrowly distributed products remains challenging. Herein, a gallium (Ga) liquid metal-based approach is employed to synthesize hierarchical nanoporous copper (HNP Cu) catalysts with tailored ligament/pore and crystallite sizes. The nanoporosity and polycrystallinity are generated by dealloying intermetallic CuGa2 formed after immersing pristine Cu foil in liquid Ga in a basic or acidic solution. The liquid metal-based approach allows for the transformation of monocrystalline Cu to the polycrystalline HNP Cu with enhanced CO2 reduction reaction (CO2RR) performance. The dealloyed HNP Cu catalyst with suitable crystallite size (22.8 nm) and nanoporous structure (ligament/pore size of 45 nm) exhibits a high Faradaic efficiency of 91% toward formate production under an applied potential as low as -0.3 VRHE. The superior CO2RR performance can be ascribed to the enlarged electrochemical catalytic surface area, the generation of preferred Cu facets, and the rich grain boundaries by polycrystallinity. This work demonstrates the potential of liquid metal-based synthesis for improving catalysts performance based on structural design, without increasing compositional complexity.
RESUMO
This work aimed to investigate the effect of salt concentration on the quality and microbial community of pickled peppers during fermentation, and the cross-correlation between microorganisms and quality was also revealed. The results showed that 9 volatile flavor compounds were unique to the low salt concentration group (D group), which also contained higher content of FAA, lactic acid and acetic acid than high salt concentration group (G group). Meanwhile, the samples of D2 group have a better texture properties. Firmicutes, Proteobacteria, Ascomycota, Lactobacillus, Pectobacterium, and Pseudomonas were detected as the main microbial community during the fermentation with different salt concentrations. Furthermore, the correlations analysis results indicated that the salt concentration has a significant effect on the microbial community of pickled peppers (p < 0.001), and Pediococcus, Lactobacillus, Cedecca, Issatchenkia, Pichia, Kazachstania, and Hanseniaspora were significantly correlated with flavors, which played crucial roles in the unique flavor formation of pickled peppers.
RESUMO
An efficient method has been developed for the synthesis of α-deuterated α-amino esters via hydrogen isotope exchange of α-amino esters in D2O with 2-hydroxynicotinaldehyde as a catalyst under mild conditions. This methodology exhibits a wide range of substrate scopes, remarkable functional group tolerance, and affording the desired products in good yields with excellent deuterium incorporation. Notably, the ortho-hydroxyl group and the pyridine ring of the catalyst play a crucial role in the catalytic activity, which not only stabilizes the carbon-anion intermediates but also enhances the acidity of the amino esters' α-C-H bond.
RESUMO
Lead (Pb) halide perovskite solar cells (PSCs) exhibit impressive power conversion efficiencies close to those of their silicon counterparts. However, they suffer from moisture instability and Pb safety concerns. Previous studies have endeavoured to address these issues independently, yielding minimal advancements. Here, a general nanoencapsulation platform using natural polyphenols is reported for Pb-halide PSCs that simultaneously addresses both challenges. The polyphenol-based encapsulant is solution-processable, inexpensive (≈1.6 USD m-2), and requires only 5 min for the entire process, highlighting its potential scalability. The encapsulated devices with a power conversion efficiency of 20.7% retained up to 80% of their peak performance for 2000 h and up to 70% for 7000 h. Under simulated rainfall conditions, the encapsulant rich in catechol groups captures the Pb ions released from the degraded perovskites via coordination, keeping the Pb levels within the safe drinking water threshold of 15 ppb.
RESUMO
Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.
RESUMO
Multi-stimulus responsive soft materials with integrated functionalities are elementary blocks for building soft intelligent systems, but their rational design remains challenging. Here, we demonstrate an intelligent soft architecture sensitized by magnetized liquid metal droplets that are dispersed in a highly stretchable elastomer network. The supercooled liquid metal droplets serve as microscopic latent heat reservoirs, and their controllable solidification releases localized thermal energy/information flows for enabling programmable visualization and display. This allows the perception of a variety of information-encoded contact (mechanical pressing, stretching, and torsion) and noncontact (magnetic field) stimuli as well as the visualization of dynamic phase transition and stress evolution processes, via thermal and/or thermochromic imaging. The liquid metal-elastomer architecture offers a generic platform for designing soft intelligent sensing, display, and information encryption systems.
RESUMO
Neural tracing proteins like horseradish peroxidase-conjugated wheat germ agglutinin (WGA-HRP) can target the central nervous system (CNS) through anatomic retrograde transport without crossing the blood-brain barrier (BBB). Conjugating WGA-HRP to nanoparticles may enable the creation of BBB-bypassing nanomedicine. Microfluidics and two-photon confocal microscopy is applied to screen nanocarriers for transport efficacy and gain mechanistic insights into their interactions with neurons. Protein modification of gold nanoparticles alters their cellular uptake at the axonal terminal and activates fast retrograde transport. Trajectory analysis of individual endosomes carrying the nanoparticles reveals a run-and-pause pattern along the axon with endosomes carrying WGA-HRP-conjugated gold nanoparticles exhibiting longer run duration and faster instantaneous velocity than those carrying nonconjugated nanoparticles. The results offer a mechanistic explanation of the different axonal transport dynamics as well as a cell-based functional assay of neuron-targeted nanoparticles with the goal of developing BBB-bypassing nanomedicine for the treatment of nervous system disorders.
Assuntos
Transporte Axonal , Ouro , Neurônios , Transporte Axonal/fisiologia , Neurônios/metabolismo , Animais , Ouro/química , Aglutininas do Germe de Trigo/metabolismo , Aglutininas do Germe de Trigo/química , Nanopartículas Metálicas/química , Nanopartículas/química , Axônios/metabolismo , RatosRESUMO
The size-controlled synthesis of liquid metal nanoparticles is necessary in a variety of applications. Sonication is a common method for breaking down bulk liquid metals into small particles, yet the influence of critical factors such as liquid metal composition has remained elusive. Our study employs high-speed imaging to unravel the mechanism of liquid metal particle formation during mechanical agitation. Gallium-based liquid metals, with and without secondary metals of bismuth, indium, and tin, are analyzed to observe the effect of cavitation and surface eruption during sonication and particle release. The impact of the secondary metal inclusion is investigated on liquid metals' surface tension, solution turbidity, and size distribution of the generated particles. Our work evidences that there is an inverse relationship between the surface tension and the ability of liquid metals to be broken down by sonication. We show that even for 0.22 at. % of bismuth in gallium, the surface tension is significantly decreased from 558 to 417 mN/m (measured in Milli-Q water), resulting in an enhanced particle generation rate: 3.6 times increase in turbidity and â¼43% reduction in the size of particles for bismuth in gallium liquid alloy compared to liquid gallium for the same sonication duration. The effect of particles' size on the photocatalysis of the annealed particles is also presented to show the applicability of the process in a proof-of-concept demonstration. This work contributes to a broader understanding of the synthesis of nanoparticles, with controlled size and characteristics, via mechanical agitation of liquid metals for diverse applications.
RESUMO
Energy can exist in nature in a wide range of forms. Energy conversion refers to the process in which energy is converted from one form to another, and this process will be greatly enhanced by energy conversion sensitizers. Recently, an emerging class of new materials, namely liquid metals (LMs), shows excellent prospects as highly versatile materials. Notably, in terms of energy delivery and conversion, LMs functional materials are chemical responsive, heat-responsive, photo-responsive, magnetic-responsive, microwave-responsive, and medical imaging responsive. All these intrinsic virtues enabled promising applications in energy conversion, which means LMs can act as energy sensitizers for enhancing energy conversion and transport. Herein, first the unique properties of the light, heat, magnetic and microwave converting capacity of gallium-based LMs materials are summarized. Then platforms and applications of LM-based energy conversion sensitizers are highlighted. Finally, some of the potential applications and opportunities of LMs are prospected as energy conversion sensitizers in the future, as well as unresolved challenges. Collectively, it is believed that this review provides a clear perspective for LMs mediated energy conversion, and this topic will help deepen knowledge of the physical chemistry properties of LMs functional materials.
RESUMO
BACKGROUND: The rapid global spread of COVID-19 has seriously impacted people's daily lives and the social economy while also posing a threat to their lives. The analysis of infectious disease transmission is of significant importance for the rational allocation of epidemic prevention and control resources, the management of public health emergencies, and the improvement of future public health systems. METHODS: We propose a spatiotemporal COVID-19 transmission model with a neighborhood as an agent unit and an urban spatial network with long and short edge connections. The spreading model includes a network of defined agent attributes, transformation rules, and social relations and a small world network representing agents' social relations. Parameters for each stage are fitted by the Runge-Kutta method combined with the SEIR model. Using the NetLogo development platform, accurate dynamic simulations of the spatial and temporal evolution of the early epidemic were achieved. RESULTS: Experimental results demonstrate that the fitted curves from the four stages agree with actual data, with only a 12.27% difference between the average number of infected agents and the actual number of infected agents after simulating 1 hundred times. Additionally, the model simulates and compares different "city closure" scenarios. The results showed that implementing a 'lockdown' 10 days earlier would lead to the peak number of infections occurring 7 days earlier than in the normal scenario, with a reduction of 40.35% in the total number of infections. DISCUSSION: Our methodology emphasizes the crucial role of timely epidemic interventions in curbing the spread of infectious diseases, notably in the predictive assessment and evaluation of lockdown strategies. Furthermore, this approach adeptly forecasts the influence of varying intervention timings on peak infection rates and total case numbers, accurately reflecting real-world virus transmission patterns. This highlights the importance of proactive measures in diminishing epidemic impacts. It furnishes a robust framework, empowering policymakers to refine epidemic response strategies based on a synthesis of predictive modeling and empirical data.
Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Controle de Doenças Transmissíveis/métodos , Simulação por ComputadorRESUMO
Liver transplantation is the primary therapeutic intervention for end-stage liver disease. However, vascular complications, particularly those involving the hepatic artery, pose significant risks to patients. The clinical manifestations associated with early arterial complications following liver transplantation are often nonspecific. Without timely intervention, these complications can result in graft failure or patient mortality. Therefore, early diagnosis and the formulation of an optimal treatment plan are imperative. Ultrasound examination remains the predominant imaging modality for detecting complications post liver transplantation. This article comprehensively reviews common causes and clinical presentations of early hepatic artery complications in the post-transplantation period and delineates abnormal sonographic findings for accurate diagnosis of these conditions. Overall, ultrasound offers the advantages of convenience, safety, effectiveness, and non-invasiveness. It enables real-time, dynamic, and precise evaluation, making it the preferred diagnostic method for post-liver transplantation assessments.
RESUMO
The emergence of ferroelectricity in two-dimensional (2D) metal oxides is a topic of significant technological interest; however, many 2D metal oxides lack intrinsic ferroelectric properties. Therefore, introducing asymmetry provides access to a broader range of 2D materials within the ferroelectric family. Here, the generation of asymmetry in 2D SnO by doping the material with Hf0.5Zr0.5O2 (HZO) is demonstrated. A liquid metal process as a doping strategy for the preparation of 2D HZO-doped SnO with robust ferroelectric characteristics is implemented. This technology takes advantage of the selective interface enrichment of molten Sn with HZO crystallites. Molecular dynamics simulations indicate a strong tendency of Hf and Zr atoms to migrate toward the surface of liquid metal and embed themselves within the growing oxide layer in the form of HZO. Thus, the liquid metal-based harvesting/doping technique is a feasible approach devised for producing novel 2D metal oxides with induced ferroelectric properties, represents a significant development for the prospects of random-access memories.
RESUMO
The development of advanced solar energy technologies, which efficiently convert solar energy to heat and then to electricity, remains a significant challenge in the pursuit of clean energy production. Here, this challenge is addressed by designing a photothermal absorber composed of liquid gallium particles and a natural polyphenol-based coordination ink. The design of this composite takes advantage of the tuneable light absorption properties of the polyphenol inks and can also be applied onto flexible substrates. While the ink utilizes two types of coordination complexes to absorb light at different wavelengths, the liquid gallium particles with high thermal and electrical properties provide enhanced thermoelectric effect. As such, the photothermal composite exhibits a broad-spectrum light absorption and highly efficient solar-to-heat conversion. A thermoelectric generator coated with the photothermal composite exhibits an impressive voltage output of ≈185.3 mV when exposed to 1 Sun illumination, without requiring any optical concentration, which sets a new record for a power density at 345.5 µW cm-2 . This work showcases the synergistic combination of natural compound-based light-absorbing coordination complexes with liquid metals to achieve a strong photothermal effect and their integration into thermoelectric devices with powerful light harvesting capabilities.
RESUMO
We introduce an ultrasound speckle decorrelation-based time-lagged functional ultrasound technique (tl-fUS) for the quantification of the relative changes in cerebral blood flow speed (rCBF [Formula: see text]), cerebral blood volume (rCBV) and cerebral blood flow (rCBF) during functional stimulations. Numerical simulations, phantom validations, and in vivo mouse brain experiments were performed to test the capability of tl-fUS to parse out and quantify the ratio change of these hemodynamic parameters. The blood volume change was found to be more prominent in arterioles compared to venules and the peak blood flow changes were around 2.5 times the peak blood volume change during brain activation, agreeing with previous observations in the literature. The tl-fUS shows the ability of distinguishing the relative changes of rCBFspeed, rCBV, and rCBF, which can inform specific physiological interpretations of the fUS measurements.
Assuntos
Neoplasias Encefálicas , Hemodinâmica , Animais , Camundongos , Volume Sanguíneo , Ultrassonografia , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodosRESUMO
The use of liquid gallium as a solvent for catalytic reactions has enabled access to well-dispersed metal atoms configurations, leading to unique catalytic phenomena, including activation of neighbouring liquid atoms and mobility-induced activity enhancement. To gain mechanistic insights into liquid metal catalysts, here we introduce a GaSn0.029Ni0.023 liquid alloy for selective propylene synthesis from decane. Owing to their mobility, dispersed atoms in a Ga matrix generate configurations where interfacial Sn and Ni atoms allow for critical alignments of reactants and intermediates. Computational modelling, corroborated by experimental analyses, suggests a particular reaction mechanism by which Sn protrudes from the interface and an adjacent Ni, below the interfacial layer, aligns precisely with a decane molecule, facilitating propylene production. We then apply this reaction pathway to canola oil, attaining a propylene selectivity of ~94.5%. Our results offer a mechanistic interpretation of liquid metal catalysts with an eye to potential practical applications of this technology.