Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phytomedicine ; 130: 155717, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38810550

RESUMO

Heart failure is a life-threatening cardiovascular disease and characterized by cardiac hypertrophy, inflammation and fibrosis. The traditional Chinese medicine formula Qiangxinyin (QXY) is effective for the treatment of heart failure while the underlying mechanism is not clear. This study aims to identify the active ingredients of QXY and explore its mechanisms protecting against cardiac hypertrophy. We found that QXY significantly protected against isoproterenol (ISO)-induced cardiac hypertrophy and dysfunction in zebrafish. Eight compounds, including benzoylmesaconine (BMA), atractylenolide I (ATL I), icariin (ICA), quercitrin (QUE), psoralen (PRN), kaempferol (KMP), ferulic acid (FA) and protocatechuic acid (PCA) were identified from QXY. PRN, KMP and icaritin (ICT), an active pharmaceutical ingredient of ICA, prevented ISO-induced cardiac hypertrophy and dysfunction in zebrafish. In H9c2 cardiomyocyte treated with ISO, QXY significantly blocked the calcium influx, reduced intracellular lipid peroxidative product MDA, stimulated ATP production and increased mitochondrial membrane potential. QXY also inhibited ISO-induced cardiomyocyte hypertrophy and cytoskeleton reorganization. Mechanistically, QXY enhanced the phosphorylation of Smad family member 2 (SMAD2) and myosin phosphatase target subunit-1 (MYPT1), and suppressed the phosphorylation of myosin light chain (MLC). In conclusion, PRN, KMP and ICA are the main active ingredients of QXY that protect against ISO-induced cardiac hypertrophy and dysfunction largely via the blockage of calcium influx and inhibition of mitochondrial dysfunction as well as cytoskeleton reorganization.

2.
Mol Cell Biochem ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310588

RESUMO

Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1ß, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1ß is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1ß-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.

3.
Analyst ; 148(3): 628-635, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602005

RESUMO

Biofilms are known to be a great challenge for their anti-bacterial activity as they obstruct drug action for deeper and more thorough bacteria-killing effects. Therefore, developing highly effective antibacterial agents to destroy biofilms and eradicate bacteria is of great significance. Herein, a new type of nanocomposites (denoted as poly(4-cyanostyrene)@silver@polylysine) is proposed, in which polylysine (PLL) could rapidly capture the biofilms and exhibit excellent antibacterial efficacy together with decorated silver (Ag) nanoparticles (NPs) through the charge effect and Ag+ release. Notably, nearly 100% antibacterial rates against Gram-positive bacterium (Staphylococcus aureus, S. aureus) and Gram-negative bacterium (Escherichia coli, E. coli) were achieved. More importantly, poly(4-cyanostyrene) with biological silent Raman imaging capacity is able to illustrate the relationship between antibacterial efficiency and biofilm breakage. In short, such novel nanocomposites can improve the bioavailability of each component and display tremendous potential in antibacterial applications.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Escherichia coli , Prata/farmacologia , Polilisina/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Biofilmes
4.
Biomed Pharmacother ; 158: 114137, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525817

RESUMO

Homocysteine (Hcy) is one of the independent risk factors of cardiovascular disease. Sodium tanshinone IIA sulfonate (STS) is a hydrophilic derivate of tanshinone IIA which is the main active constitute of Chinese Materia Medica Salviae Miltiorrhizae Radix et Rhizoma, and exhibits multiple pharmacological activities. However, whether STS could prevent from Hcy-induced endothelial cell injury is unknown. We found that STS dramatically reversed Hcy-induced cell death concentration dependently in human umbilical vascular endothelial cells (HUVECs). STS ameliorated the endothelial cell cycle progression, proliferation and cell migratory function impaired by Hcy, which might be co-related to the inhibition of intracellular oxidative stress and mitochondrial dysfunction. STS also elevated the phosphorylation of AKT and MAPKs and protein expression of sirtuin1 (SIRT1), NRF2 and HO-1 which were suppressed by Hcy. The protective effect of STS against Hcy-induced endothelial cell toxicity was partially attenuated by PI3K, AKT, MEK, ERK, SIRT1, NRF2 and HO-1 inhibitors. Besides, knockdown of SIRT1 by its siRNA dramatically decreased the endothelial protective effect of STS accompanied with suppression of SIRT1, NRF2, HO-1 and phosphorylated AKT. The activation of AKT or NRF2 partially reversed SIRT1-knockdown impaired cyto-protective effect of STS against Hcy-induced cell injury. Furthermore, STS prevented from Hcy-induced intracellular nicotinamide N-methyltransferase (NNMT) reduction along with elevation of intracellular methylnicotinamide (MNA), and MNA enhanced STS protecting against Hcy induced endothelial death. Knockdown of NNMT reduced the protective effect of STS against Hcy induced endothelial cell injury. Collectively, STS presented potent endothelial protective effect against Hcy and the underlying molecular mechanisms were involved in the suppression of intracellular oxidative stress and mitochondria dysfunction by activation of AKT/MAPKs, SIRT1/NRF2/HO-1 and NNMT/MNA signaling pathways.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Estresse Oxidativo , Células Endoteliais da Veia Umbilical Humana , Nicotinamida N-Metiltransferase/metabolismo
5.
Front Pharmacol ; 13: 1037341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532721

RESUMO

Metabolic disturbance, particularly of glucose metabolism, is a hallmark of tumors such as non-small cell lung cancer (NSCLC). Cancer cells tend to reprogram a majority of glucose metabolism reactions into glycolysis, even in oxygen-rich environments. Although glycolysis is not an efficient means of ATP production compared to oxidative phosphorylation, the inhibition of tumor glycolysis directly impedes cell survival and growth. This review focuses on research advances in glycolysis in NSCLC and systematically provides an overview of the key enzymes, biomarkers, non-coding RNAs, and signaling pathways that modulate the glycolysis process and, consequently, tumor growth and metastasis in NSCLC. Current medications, therapeutic approaches, and natural products that affect glycolysis in NSCLC are also summarized. We found that the identification of appropriate targets and biomarkers in glycolysis, specifically for NSCLC treatment, is still a challenge at present. However, LDHB, PDK1, MCT2, GLUT1, and PFKM might be promising targets in the treatment of NSCLC or its specific subtypes, and DPPA4, NQO1, GAPDH/MT-CO1, PGC-1α, OTUB2, ISLR, Barx2, OTUB2, and RFP180 might be prognostic predictors of NSCLC. In addition, natural products may serve as promising therapeutic approaches targeting multiple steps in glycolysis metabolism, since natural products always present multi-target properties. The development of metabolic intervention that targets glycolysis, alone or in combination with current therapy, is a potential therapeutic approach in NSCLC treatment. The aim of this review is to describe research patterns and interests concerning the metabolic treatment of NSCLC.

6.
Infect Drug Resist ; 15: 6495-6499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386411

RESUMO

Trichosporon asahii is an uncommon cause of fungal sepsis among neonates, but it is an important life-threatening opportunistic systemic pathogen. We report a case of T. asahii sepsis in a 980-g female baby born at 27 weeks of gestation. The extremely preterm initially presented with recurrent feeding intolerance and bloating; she subsequently developed oxygen saturation fluctuations, apnea, and a decreased heart rate. Blood culture was positive, and the causative agent was identified as T. asahii by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). According to reported minimum inhibitory concentration (MIC) values, the infant received a high dose of fluconazole (FLC, 12 mg/kg, qod) and was successfully treated.

7.
Drug Des Devel Ther ; 16: 4061-4076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36448035

RESUMO

Background: Triptolide, a major active ingredient isolated from Tripterygium wilfordii Hook f., is effective in the treatment of membranous nephropathy (MN); however, its pharmacological mechanism of action has not yet been clarified. We applied an approach that integrated network pharmacology and experimental validation to systemically reveal the molecular mechanism of triptolide in the treatment of MN. Methods: First, potential targets of triptolide and the MN-related targets were collected from publicly available database. Then, based on a protein-protein interaction network as well as GO and KEGG pathway enrichment analyses, we constructed target-pathway networks to unravel therapeutic targets and pathways. Moreover, molecular docking was applied to validate the interactions between the triptolide and hub targets. Finally, we induced passive Heymann nephritis (PHN) rat models and validated the possible molecular mechanisms of triptolide against MN. Results: The network pharmacology results showed that 118 intersected targets were identified for triptolide against MN, including mTOR, STAT3, CASP3, EGFR and AKT1. Based on enrichment analysis, signaling pathways such as PI3K/AKT, MAKP, Ras and Rap1 were involved in triptolide treatment of MN. Furthermore, molecular docking confirmed that triptolide could bind with high affinity to the PIK3R1, AKT1 and mTOR, respectively. Then, in vivo experiments indicated that triptolide can reduce 24 h urine protein (P < 0.01) and protect against renal damage in PHN. Serum albumin level was significantly increased and total cholesterol, triglycerides, and low-density lipoprotein levels were decreased by triptolide (P < 0.05). Compared with PHN group, triptolide treatment regulated the PI3K/AKT/mTOR pathway according to Western blot analyses. Conclusion: Triptolide could exert antiproteinuric and renoprotective effects in PHN. The therapeutic mechanism of triptolide may be associated with the regulation of PI3K/AKT/mTOR signaling pathway. This study demonstrates the pharmacological mechanism of triptolide in the treatment of MN and provides scientific evidence for basic and clinical research.


Assuntos
Glomerulonefrite Membranosa , Animais , Ratos , Glomerulonefrite Membranosa/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
8.
Food Res Int ; 161: 111788, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192879

RESUMO

An important puzzle for tea consumers is which type of tea is effective in treating metabolic syndrome (MS). In this study, the effects of six types of tea extracts (TEs) on high-fat diet (HFD)-induced MS, as well as chemical components of six TEs, were investigated and compared. Each TE consisted of representative tea originated from different places in China to avoid one-sidedness of sampling. All six TEs were found to attenuate MS and ameliorate intestinal barrier function in HFD-fed rats. Further, white tea performed better in body weight control, while dark tea had more advantages in protecting intestinal barrier. Moreover, all six TEs alleviated the gut microbiota dysbiosis, which was manifested by decreased Firmicutes/Bacteroidetes ratio and enriched beneficial bacteria, such as Akkermansia, Bacteroides, and Bifidobacterium. Together, all six TEs attenuate HFD-induced MS although their efficiency varies, and this therapeutic effect is related to the modulation of gut microbiota.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Animais , Dieta Hiperlipídica/efeitos adversos , Síndrome Metabólica/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Chá
9.
J Ethnopharmacol ; 297: 115547, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35870688

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS: We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS: Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS: FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION: FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Tribulus , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso , Preparações Farmacêuticas/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
10.
Org Lett ; 23(19): 7336-7341, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523943

RESUMO

Exploration of the diastereodivergent synthesis of spirocyclic oxindoles has been challenging. Herein we report asymmetric [3 + 2] annulations of isatin-derived Morita-Baylis-Hillman (MBH) carbonates and 5-alkenylthiazol-4(5H)-ones. Interestingly, two different chiral catalysts, amide-phosphine and 4-dimethylaminopyridine (DMAP)-thiourea, could lead to two kinds of diastereomeric dispiro oxindoles with three contiguous stereogenic centers. The hexafluoroisopropanol (HFIP) additive plays a vital role in accelerating the reaction and tuning the diastereoselectivity. Moreover, both annulation adducts could be further converted to structurally diverse spirooxindoles.

11.
Cell Death Differ ; 28(12): 3251-3269, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34131310

RESUMO

Tumour metastasis is a major reason accounting for the poor prognosis of colorectal cancer (CRC), and the discovery of targets in the primary tumours that can predict the risk of CRC metastasis is now urgently needed. In this study, we identified autophagy-related protein 9B (ATG9B) as a key potential target gene for CRC metastasis. High expression of ATG9B in tumour significantly increased the risk of metastasis and poor prognosis of CRC. Mechanistically, we further find that ATG9B promoted CRC invasion mainly through autophagy-independent manner. MYH9 is the pivotal interacting protein for ATG9B functioning, which directly binds to cytoplasmic peptide segments aa368-411 of ATG9B by its head domain. Furthermore, the combination of ATG9B and MYH9 enhance the stability of each other by decreasing their binding to E3 ubiquitin ligase STUB1, therefore preventing them from ubiquitin-mediated degradation, which further amplified the effect of ATG9B and MYH9 in CRC cells. During CRC cell invasion, ATG9B is transported to the cell edge with the assistance of MYH9 and accelerates focal adhesion (FA) assembly through mediating the interaction of endocytosed integrin ß1 and Talin-1, which facilitated to integrin ß1 activation. Clinically, upregulated expression of ATG9B in human CRC tissue is always accompanied with highly elevated expression of MYH9 and associated with advanced CRC stage and poor prognosis. Taken together, this study highlighted the important role of ATG9B in CRC metastasis by promoting focal adhesion assembly, and ATG9B together with MYH9 can provide a pair of potential therapeutic targets for preventing CRC progression.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Colorretais/genética , Adesões Focais/metabolismo , Proteínas de Membrana/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Metástase Neoplásica , Prognóstico , Análise de Sobrevida
12.
Artigo em Inglês | MEDLINE | ID: mdl-33628304

RESUMO

Inflammation response is a regulated cellular process and excessive inflammation has been recognized in numerous diseases, such as cardiovascular disease, neurodegenerative disease, inflammatory bowel disease, and cancer. Tribulus terrestris L. (TT), also known as Bai Jili in Chinese, has been applied in traditional Chinese medicine for thousands of years while its anti-inflammatory activity and underlying mechanism are not fully elucidated. Here, we hypothesize Tribulus terrestris L. extract (BJL) which presents anti-inflammatory effect, and the action mechanism was also investigated. We employed the transgenic zebrafish line Tg(MPO:GFP), which expresses green fluorescence protein (GFP) in neutrophils, and mice macrophage RAW 264.7 cells as the in vivo and in vitro model to evaluate the anti-inflammatory effect of BJL, respectively. The production of nitric oxide (NO) was measured by Griess reagent. The mRNA expression levels of inflammatory cytokines and inducible nitric oxide synthase (iNOS) were measured by real-time PCR, and the intracellular total or phosphorylated protein levels of NF-κB, Akt, and MAPKs including MEK, ERK, p38, and JNK were detected by western blot. We found that BJL significantly inhibited fin transection or lipopolysaccharide- (LPS-) induced neutrophil migration and aggregation in zebrafish in vivo. In mice macrophage RAW 264.7 cells, BJL ameliorated LPS-triggered excessive release of NO and transcription of inflammatory cytokine genes including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß). BJL also reduced the LPS-induced elevations of intracellular iNOS and nuclear factor kappa B (NF-κB) which mediate the cellular NO and inflammatory cytokine productions, respectively. Moreover, LPS dramatically increased the phosphorylation of Akt and MAPKs including MEK, ERK, p38, and JNK in RAW 264.7 cells, while cotreatment BJL with LPS suppressed their phosphorylation. Taken together, our data suggested that BJL presented potent anti-inflammatory effect and the underlying mechanism was closely related to the inhibition of Akt/MAPKs and NF-κB/iNOS-NO signaling pathways.

13.
Front Pharmacol ; 11: 551745, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123006

RESUMO

Hemorrhage stroke is a severe vascular disease of the brain with a high mortality rate in humans. Salvia miltiorrhiza Bunge (Danshen) is a well-known Chinese Materia Medica for treating cerebral vascular and cardiovascular diseases in traditional Chinese medicine. Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA, which is the main active ingredient of Danshen. In our previous study, we established a zebrafish model of cerebral hemorrhage and found that STS dramatically decreased both the hemorrhage rate and hemorrhage area, although the underlying mechanism was not fully elucidated. We conducted a transcriptome analysis of the protective effect of STS against atorvastatin (Ator)-induced cerebral hemorrhage in zebrafish using RNA-seq technology. RNA-seq revealed 207 DEGs between the Ator-treated group and control group; the expression levels of 53 DEGs between the Ator-treated group and control group were reversed between the STS + Ator-treated group and Ator-treated group. GO enrichment analysis indicated that these 53 DEGs encode proteins with roles in hemoglobin complexes, oxygen carrier activity and oxygen binding, etc. KEGG analysis suggested that these 53 DEGs were most enriched in three items, namely, porphyrin and chlorophyll metabolism, ferroptosis, and the HIF-1 signaling pathway. The PPI network analysis identified 12 hub genes, and we further verified that Ator elevated the mRNA expression levels of hemoglobin (hbae1.3, hbae3, hbae5, hbbe2, and hbbe3), carbonic anhydrase (cahz), HIF-1 (hif1al2) and Na+/H+ exchanger (slc4a1a and slc9a1) genes, while STS significantly suppressed these genes. In addition, we found that pharmacological inhibition of PI3K/Akt, MAPKs, and mTOR signaling pathways by specific inhibitors partially attenuated the protective effect of STS against Ator-induced cerebral hemorrhage in zebrafish, regardless of mTOR inhibition. We concluded that hemoglobin, carbonic anhydrase, Na+/H+ exchanger and HIF-1 genes might be potential biomarkers of Ator-induced cerebral hemorrhage in zebrafish, as well as pharmacological targets of STS. Moreover, HIF-1 and its regulators, i.e., the PI3K/Akt and MAPK signaling pathways, were involved in the protective effect of STS against Ator-induced cerebral hemorrhage. This study also provided evidence of biomarkers involved in hemorrhage stroke and improved understanding of the effects of HMG-COA reductase inhibition on vascular permeability and cerebral hemorrhage.

14.
Infect Dis (Lond) ; 52(12): 913-916, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32721199

RESUMO

BACKGROUND: COVID-19 reported in pregnant women has occured in late pregnancy, while there are no reports of infection in the first and second trimester. We report two neonates born to mothers with COVID-19 during the second trimester. CASE PRESENTATION: Two pregnant women had symptomatic COVID-19 in the second trimester. Throat swabs at delivery for SARS-COV-2 RNA were negative for both women and their newborns. The first woman had positive serum IgM and IgG antibodies to SARS-COV-2 before delivery. Her newborn had negative IgM antibody to SARS-COV-2 but IgG was positive on the 7th day after birth. The second woman had negative serum IgM antibody to SARS-COV-2 but IgG was positive before delivery. Her newborn had negative serum IgM antibody to SARS-COV-2 but IgG was positive at 48 h after birth. None of the neonates developed clinical symptoms of COVID-19. CONCLUSION: SARS-COV-2 is unlikely to be vertically transmitted in utero as evidenced by the specific antibodies in the serum of the two women and their newborns. The two women with SARS-COV-2 infection in the second trimester did not develop serious complications at delivery and outcomes of the neonates were good.


Assuntos
Infecções por Coronavirus/transmissão , Transmissão Vertical de Doenças Infecciosas , Pneumonia Viral/transmissão , Complicações Infecciosas na Gravidez/virologia , Adulto , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/sangue , Feminino , Humanos , Imunoglobulina M/sangue , Recém-Nascido , Mães , Pandemias , Pneumonia Viral/sangue , Gravidez , Complicações Infecciosas na Gravidez/sangue , Segundo Trimestre da Gravidez , SARS-CoV-2
15.
Front Pharmacol ; 11: 764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581782

RESUMO

Anemarrhena asphodeloides Bunge is a famous Chinese Materia Medica and has been used in traditional Chinese medicine for more than two thousand years. Steroidal saponins are important active components isolated from A. asphodeloides Bunge. Among which, the accumulation of numerous experimental studies involved in Timosaponin AIII (Timo AIII) draws our attention in the recent decades. In this review, we searched all the scientific literatures using the key word "timosaponin AIII" in the PubMed database update to March 2020. We comprehensively summarized the pharmacological activity, pharmacokinetics, and toxicity of Timo AIII. We found that Timo AIII presents multiple-pharmacological activities, such as anti-cancer, anti-neuronal disorders, anti-inflammation, anti-coagulant, and so on. And the anti-cancer effect of Timo AIII in various cancers, especially hepatocellular cancer and breast cancer, is supposed as its most potential activity. The anti-inflammatory activity of Timo AIII is also beneficial to many diseases. Moreover, VEGFR, X-linked inhibitor of apoptosis protein (XIAP), B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), thromboxane (Tx) A2 receptor, mTOR, NF-κB, COX-2, MMPs, acetylcholinesterase (AChE), and so on are identified as the crucial pharmacological targets of Timo AIII. Furthermore, the hepatotoxicity of Timo AIII was most concerned, and the pharmacokinetics and toxicity of Timo AIII need further studies in diverse animal models. In conclusion, Timo AIII is potent as a compound or leading compound for further drug development while still needs in-depth studies.

16.
Acta Pharmacol Sin ; 41(2): 260-269, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31515528

RESUMO

Timosaponin AIII (Timo AIII) is a natural steroidal saponin isolated from the traditional Chinese herb Anemarrhena asphodeloides Bge with proved effectiveness in the treatment of numerous cancers. However, whether Timo AIII suppresses tumor angiogenesis remains unclear. In the present study, we investigated the antiangiogenesis effects of Timo AIII and the underlying mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and zebrafish embryos in vivo. We showed that treatment with Timo AIII (0.5-2 µM) partially disrupted the intersegmental vessels (ISVs) and subintestinal vessels (SIVs) growth in transgenic zebrafish Tg(fli-1a: EGFP)y1. Timo AIII (0.5-4 µM) dose-dependently inhibited VEGF-induced proliferation, migration, invasion, and tube formation of HUVECs, but these inhibitory effects were not due to its cytotoxicity. We further demonstrated that Timo AIII treatment significantly suppressed the expression of VEGF receptor (VEGFR) and the phosphorylation of Akt, MEK1/2, and ERK1/2 in HUVECs. Timo AIII treatment also significantly inhibited VEGF-triggered phosphorylation of VEGFR2, Akt, and ERK1/2 in HUVECs. Moreover, we conducted RNA-Seq and analyzed the transcriptome changes in both HUVECs and zebrafish embryos following Timo AIII treatment. The coexpression network analysis results showed that various biological processes and signaling pathways were enriched including angiogenesis, cell motility, cell adhesion, protein serine/threonine kinase activity, transmembrane signaling receptor activity, growth factor activity, etc., which was consistent with the antiangiogenesis effects of Timo AIII in HUVECs and zebrafish embryos. We conclude that the antiangiogenesis effect of Timo AIII is mediated through VEGF/PI3K/Akt/MAPK signaling cascade; Timo AIII potentially exerts antiangiogenesis effect in cancer treatment.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Saponinas/farmacologia , Esteroides/farmacologia , Inibidores da Angiogênese/administração & dosagem , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Saponinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Esteroides/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
17.
Phytomedicine ; 65: 153083, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600690

RESUMO

BACKGROUND: Angiogenesis plays a critical role in ischemia disease like coronary heart disease. Shunxinyin formula has been developed for treating coronary heart disease according to the principle of traditional Chinese medicine while its underlying mechanism is not fully elucidated. PURPOSE: Here, we hypothesize Shuxinyin formula could promote angiogenesis and microcirculation, and the underlying mechanism is also investigated. METHODS: We established the chemical profile of Shuxinyin (SXY) extract utilizing a UHPLC-Q/Exactive analysis system and evaluated its pro-angiogenesis effect in zebrafish model. The underlying mechanisms were investigated by combination of pharmacological experiments with transcriptome analysis in zebrafish. Zebrafish treated with VEGF was served as the positive control in present study. RESULTS: We found SXY significantly enhanced the sub-intestinal vessel plexus (SIVs) growth in zebrafish. Co-treatment and post-treatment SXY attenuated VEGF receptor tyrosine kinase inhibitor II (VRI)-induced deficiency of intersegmental vessels (ISVs) in a concentration dependent manner. Post-treatment VEGF, which is a well-known angiogenesis driver, also partially ameliorated VRI-induced ISVs deficiency. In addition, SXY inhibited the down-regulation of VEGF receptors, including kdr, flt1 and kdrl, induced by VRI in zebrafish. The pro-angiogenesis effect of SXY on VRI-induced ISVs deficiency was suppressed by PI3K and JNK inhibitors, and Akt inhibitor abolished the pro-angiogenesis effect of SXY. The transcriptome profile of SXY preventing from VRI-induced vascular growth deficiency revealed that the underlying mechanisms were also co-related to cell junction, apoptosis and autophagy. CONCLUSION: We could conclude that SXY presented pro-angiogenesis effect and the action mechanisms were involved in VEGF/PI3K/Akt/MAPK signaling pathways, cell junction, apoptosis and autophagy.


Assuntos
Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcriptoma/efeitos dos fármacos , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
18.
Biomed Pharmacother ; 118: 109362, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545252

RESUMO

Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivate of tanshinone IIA (Tan IIA) which is an active lipophilic constitute of Chinese Materia Medica Salvia miltiorrhiza Bge. (Danshen). STS presents multiple pharmacological activities, including anti-oxidant, anti-inflammation and anti-apoptosis, and has been approved for treatment of cardiovascular diseases by China State Food and Drug Administration (CFDA). In this review, we comprehensively summarized the pharmacological activities and pharmacokinetics of STS, which could support the further application and development of STS. In the recent decades, numerous experimental and clinical studies have been conducted to investigate the potential treatment effects of STS in various diseases, such as heart diseases, brain diseases, pulmonary diseases, cancers, sepsis and so on. The underlying mechanisms were most related to anti-oxidative and anti-inflammatory effects of STS via regulating various transcription factors, such as NF-κB, Nrf2, Stat1/3, Smad2/3, Hif-1α and ß-catenin. Iron channels, including Ca2+, K+ and Cl- channels, were also the important targets of STS. Additionally, we emphasized the differences between STS and Tan IIA despite the interchangeable use of Tan IIA and STS in many previous studies. It is promising to improve the efficacy and reduce side effects of chemotherapeutic drug by the combination use of STS in canner treatment. The application of STS in pregnancy needs to be seriously considered. Moreover, the drug-drug interactions between STS and other drugs needs to be further studied as well as the complications of STS.


Assuntos
Fenantrenos/farmacologia , Fenantrenos/farmacocinética , Animais , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Humanos , Fenantrenos/química , Transdução de Sinais/efeitos dos fármacos
19.
Front Pharmacol ; 10: 336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057398

RESUMO

Tetrahydropalmatine (THP) is an active natural alkaloid isolated from Corydalis yanhusuo W.T. Wang which has been widely used for treating pain and cardiovascular disease in traditional Chinese medicine. Previous studies suggested THP have various pharmacological effects in neural and cardio tissue while the vascular reactivity of THP was not fully established. The present study found that THP relaxed rat aorta which contracted by phenylephrine (Phe), KCl, and U46619. The vascular relaxation effect of THP was partially attenuated by PI3K inhibitor wortmannin, Akt inhibitor IV, endothelial nitric oxide synthetase (eNOS) inhibitor L-NAME, guanylate cyclase inhibitors and the mechanical removal of endothelium. Also, the eNOS substrate L-arginine reversed the inhibition effect of L-NAME on THP-induced vascular relaxation. THP also induced intracellular NO production in human umbilical vein endothelial cells. However, Pre-incubation with ß-adrenergic receptor blocker propranolol, angiotensin II receptor 1 (AT1) inhibitor losartan, angiotensin II receptor 2 (AT1) inhibitor PD123319 or angiotensin converting enzyme inhibitor enalapril enhanced the vascular relaxation effect of THP. THP did not affect the angiotensin II induced vascular contraction. Cyclooxygenase-2 (COX2) inhibitor indomethacin did not affect the vascular relaxation effect of THP. Furthermore, pre-treatment THP attenuated KCl and Phe induced rat aorta contraction in standard Krebs solution. In Ca2+ free Krebs solution, THP inhibited the Ca2+ induced vascular contraction under KCl or Phe stress and reduced KCl stressed Ca2+ influx in rat vascular smooth muscle cells. THP also inhibited intracellular Ca2+ release induced vascular contraction by blocking Ryr or IP3 receptors. In addition, the voltage-dependent K+ channel (Kv) blocker 4-aminopyridine, ATP-sensitive K+ channel (KATP) blocker glibenclamide and inward rectifying K+ channel blocker BaCl2 attenuated THP induced vascular relaxation regardless of the Ca2+-activated K+ channel (KCa) blocker tetraethylammonium. Thus, we could conclude that THP relaxed rat aorta in an endothelium-dependent and independent manner. The underlying mechanism of THP relaxing rat aorta involved PI3K/Akt/eNOS/NO/cGMP signaling path-way, Ca2+ channels and K+ channels rather than COX2, ß-adrenergic receptor and renin-angiotensin system (RAS). These findings indicated that THP might be a potent treatment of diseases with vascular dysfunction like hypertension.

20.
Toxicol Appl Pharmacol ; 350: 32-42, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730311

RESUMO

Impaired vascular integrity leads to serious cerebral vascular diseases such as intracerebral hemorrhage (ICH). In addition, high-dose statin therapy is suggested to cause increased ICH risk due to unclear effects of general inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) on the vascular system. Here we evaluated the protective effects of sodium tanshinone IIA sulfonate (STS), which has high efficacy and safety in clinical studies of ischemic stroke, by using atorvastatin (Ator) induced ICH zebrafish embryos and human umbilical vein endothelial cells (HUVECs). By using double transgenic Tg(fli1a:EGFP)y1 & Tg(gata1a:dsRed)sd2 zebrafish, we demonstrated that STS effectively reduced the occurrence and area of hemorrhage induced by Ator in zebrafish and restored impairment in motor function. We further demonstrated that Ator-induced disruption in VE-cadherin (VEC)-containing cell-cell adherens junctions (AJs) in HUVECs by enhancing Src-induced VEC internalization and RhoA/ROCK-mediated cellular contraction. STS inhibited Ator-induced Src activation and subsequent VEC internalization and actin depolymerization near cell borders, reducing lesions between neighboring cells and increasing barrier functions. STS also inhibited the Ator-induced RhoA/ROCK-mediated cellular contraction by regulating downstream LIMK/cofilin and MYPT1/MLC phosphatase signaling. These results showed that STS significantly promoted the stability of cell junctions and vascular integrity. Moreover, we observed that regulations of both Src and RhoA/ROCK are required for the maintenance of vascular integrity, and Src inhibitor (PP2) or ROCK inhibitors (fasudil and H1152) alone could not reduce the occurrence Ator-induced ICH. Taken together, we investigated the underlying mechanisms of Ator-induced endothelial instability, and provided scientific evidences of STS as potential ICH therapeutics by promoting vascular integrity.


Assuntos
Antígenos CD/metabolismo , Atorvastatina/toxicidade , Caderinas/metabolismo , Hemorragia Cerebral/metabolismo , Endotélio Vascular/metabolismo , Fenantrenos/uso terapêutico , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/prevenção & controle , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fenantrenos/farmacologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA