Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 231(3): e13567, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33032360

RESUMO

AIMS: MOG1 is a small protein that can bind to small GTPase RAN and regulate transport of RNA and proteins between the cytoplasm and nucleus. However, the in vivo physiological role of mog1 in the heart needs to be fully defined. METHODS: Mog1 knockout zebrafish was generated by TALEN. Echocardiography, histological analysis, and electrocardiograms were used to examine cardiac structure and function. RNA sequencing and real-time RT-PCR were used to elucidate the molecular mechanism and to analyse the gene expression. Isoproterenol was used to induce cardiac hypertrophy. Whole-mount in situ hybridization was used to observe cardiac morphogenesis. RESULTS: Mog1 knockout zebrafish developed cardiac hypertrophy and heart failure (enlarged pericardium, increased nppa and nppb expression and ventricular wall thickness, and reduced ejection fraction), which was aggravated by isoproterenol. RNAseq and KEGG pathway analyses revealed the effect of mog1 knockout on the pathways of cardiac hypertrophy, dilatation and contraction. Mechanistic studies revealed that mog1 knockout decreased expression of tbx5, which reduced expression of cryab and hspb2, resulting in cardiac hypertrophy and heart failure. Overexpression of cryab, hspb2 and tbx5 rescued the cardiac oedema phenotype of mog1 KO zebrafish. Telemetry electrocardiogram monitoring showed QRS and QTc prolongation and a reduced heart rate in mog1 knockout zebrafish, which was associated with reduced scn1b expression. Moreover, mog1 knockout resulted in abnormal cardiac looping during embryogenesis because of the reduced expression of nkx2.5, gata4 and hand2. CONCLUSION: Our data identified an important molecular determinant for cardiac hypertrophy and heart failure, and rhythm maintenance of the heart.


Assuntos
Insuficiência Cardíaca , Peixe-Zebra , Animais , Cardiomegalia/genética , Coração , Insuficiência Cardíaca/genética , Transdução de Sinais
2.
Nanomaterials (Basel) ; 9(12)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817928

RESUMO

Several novel spin-dependent bi-functional metasurfaces consisting of different-sized rotary silicon nanobricks have been proposed and numerically investigated based on the Pancharatnam-Berry phase and structural phase simultaneously. Here, a transmission mechanism is strictly deduced, which can avoid crosstalk from the multiplexed bi-functional metasurface. Four kinds of high-efficiency bi-functional devices have been designed successfully at infrared wavelengths, including a spin-dependent bi-functional beam deflector, a spin-dependent bi-functional metalens, a bi-functional metasurface with spin-dependent focusing and deflection function, and a spin-dependent bi-functional vortex phase plate. All of the results demonstrate the superior performances of our designed devices. Our work opens up new doors toward building novel spin-dependent bi-functional metasurfaces, and promotes the development of bi-functional devices and spin-controlled photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA