Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 276: 116290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599154

RESUMO

Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.


Assuntos
Arabidopsis , Estresse Oxidativo , Tálio , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Tálio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Poluentes do Solo/toxicidade
2.
J Synchrotron Radiat ; 31(Pt 2): 252-259, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241123

RESUMO

In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics. From TR-XEOL measurements, the decay lifetime of micro-diamonds is determined to be approximately 16 ns. Furthermore, the XEOL spectra of artificial micro-diamonds can be investigated by the HB-T interferometer to identify properties of single-photon sources. The unprecedented strategy of combining XEOL, TR-XEOL and the HB-T interferometer at the X-ray nanoprobe beamline will open new avenues with significant characterization abilities for unraveling the emission mechanisms of single-photon sources for quantum materials.

3.
Opt Express ; 31(25): 41864-41874, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087574

RESUMO

We report a theoretical investigation of X-ray back diffraction at grazing incidence. Based on the framework of the dynamical theory of X-ray diffraction, the grazing incidence for Si (12 4 0) back diffraction is taken as an example to resolve the eigenvalue problem inside the crystal. The dispersion surface and the resulting diffraction intensities are strongly affected by the miscut angle as well as the diffraction geometry of grazing incidence. The kinematical relationship between the incident angle and the miscut angle is well explained by Snell's law. While only the two-beam diffraction is considered, our treatment can be further extended to include the cases for multiple diffractions as well.

4.
Chemosphere ; 307(Pt 4): 135799, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931251

RESUMO

The morphology and metal oxidation states of atmospheric aerosols are pertinent to their formation processes and ensuing interactions with surrounding gases, vapors and other environments upon deposition, such as human respiratory tract, soil and water. Although much progress has been made in recent years through single-particle techniques, considerably less is known with respect to the three-dimensional (3D) internal morphology of single atmospheric aerosol particles due to the limited penetration depth of electron microscopy. In this study, for the first time, a novel synchrotron-based transmission X-ray microscopy (TXM) methodology has been developed to visualize the 3D internal chemical mixing state and structure of single particles. The results show that the TXM is more applicable to the imaging of solid particles containing high-density elements, e.g., iron (Fe), aluminum (Al), silicone (Si), carbon (C) and sulfur (S), and/or solid particles of sizes larger than about 100 nm. In addition, the TXM is capable to reveal the fine 3D topographic features of single particles. The derived 3D internal and external information would be difficult to discern in the 2D images from electron microscopy. The TXM 3D images illustrate that aerosol particles exhibit complex internal mixing state and structure, e.g., homogeneously-, heterogeneously-mixed, multiple inclusions, fibrous, porous, and core-shell configuration. When coupled with the synchrotron-based X-ray fluorescence spectrometry (XRF) and absorption near-edge spectroscopy (XANES) of an X-ray nanoprobe in the energy range of 4-15 keV, the 3D morphology of single particles is further supplemented with the spatial distribution and oxidation sates of selected elements, including Fe, vanadium (V), manganese (Mn), chromium (Cr) and arsenic (As). The presented cross-platform, synchrotron-based methodology shows promise in complementing existing single-particle techniques and providing new insights to the heterogeneity of single-particle micro-physicochemical states relevant to the aerosol chemistry, optical properties, and their environmental and health impacts.


Assuntos
Arsênio , Manganês , Aerossóis/análise , Alumínio/análise , Carbono , Cromo/análise , Gases/análise , Humanos , Ferro/química , Manganês/análise , Silicones , Solo , Enxofre , Síncrotrons , Vanádio/análise , Água/análise
5.
Mater Horiz ; 9(9): 2433-2442, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35848594

RESUMO

Two-dimensional (2D) all-inorganic Ruddlesden-Popper (RP) perovskite Cs7Pb6I19 nanosheets (NSs) were successfully developed for the first time by employing a structural recrystallization process with additional passivation of small organic sulfide molecules. The structure of Cs7Pb6I19 NSs is confirmed by powder X-ray diffraction measurements, atomically-resolved STEM measurements and atomic force microscopy (AFM) studies. Cs7Pb6I19 NSs with a specific n value of 6 exhibits unique absorption and emission spectra with intense excitons at 560 nm due to quantum confinement effects in 2D perovskite slabs. The formation mechanisms of 2D Cs7Pb6I19 NSs and 3D γ-CsPbI3 phases were investigated by in situ photoluminescence (PL) spectroscopy and the activation energies of their formation reactions were calculated to be 151 kJ mol-1 and 95.3 kJ mol-1, respectively. The phase stability of 2D Cs7Pb6I19 NSs can be maintained at temperatures below 14 °C for more than 4 weeks. The overall results indicate that 2D Cs7Pb6I19 NSs demonstrate unique optical properties and structural stability compared with other 3D perovskite materials. We have opened a new path to the future discovery of 2D perovskite structures with metastable phases by using this recrystallization method and the assistance of sulfur-derived organic molecules.

6.
J Synchrotron Radiat ; 29(Pt 2): 456-461, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254309

RESUMO

This study develops and successfully demonstrates visualization methods for the characterization of europium (Eu)-doped BaAl2O4 phosphors using X-ray nanoprobe techniques. X-ray fluorescence (XRF) mapping not only gives information on the elemental distributions but also clearly reveals the valence state distributions of the Eu2+ and Eu3+ ions. The accuracy of the estimated valence state distributions was examined by performing X-ray absorption spectroscopy (XAS) across the Eu L3-edge (6.977 keV). The X-ray excited optical luminescence (XEOL) spectra exhibit different emission lines in the selected local areas. Their corresponding emission distributions can be obtained via XEOL mapping. The emission properties can be understood through correlation analysis. The results demonstrate that the main contribution to the luminescence intensity of the Eu-doped BaAl2O4 comes from the Eu2+ activator and the emission intensity will not be influenced by the concentration of Eu2+ or Eu3+ ions. It is anticipated that X-ray nanoprobes will open new avenues with significant characterization ability for unravelling the emission mechanisms of phosphor materials.

7.
J Synchrotron Radiat ; 28(Pt 6): 1921-1926, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738947

RESUMO

X-ray ptychography, a technique based on scanning and processing of coherent diffraction patterns, is a non-destructive imaging technique with a high spatial resolution far beyond the focused beam size. Earlier demonstrations of hard X-ray ptychography at Taiwan Photon Source (TPS) using an in-house program successfully recorded the ptychographic diffraction patterns from a gold-made Siemens star as a test sample and retrieved the finest inner features of 25 nm. Ptychography was performed at two beamlines with different focusing optics: a pair of Kirkpatrick-Baez mirrors and a pair of nested Montel mirrors, for which the beam sizes on the focal planes were 3 µm and 200 nm and the photon energies were from 5.1 keV to 9 keV. The retrieved spatial resolutions are 20 nm to 11 nm determined by the 10-90% line-cut method and half-bit threshold of Fourier shell correlation. This article describes the experimental conditions and compensation methods, including position correction, mixture state-of-probe, and probe extension methods, of the aforementioned experiments. The discussions will highlight the criteria of ptychographic experiments at TPS as well as the opportunity to characterize beamlines by measuring factors such as the drift or instability of beams or stages and the coherence of beams. Besides, probe functions, the full complex fields illuminated on samples, can be recovered simultaneously using ptychography. Theoretically, the wavefield at any arbitrary position can be estimated from one recovered probe function undergoing wave-propagating. The verification of probe-propagating has been carried out by comparing the probe functions obtained by ptychography and undergoing wave-propagating located at 0, 500 and 1000 µm relative to the focal plane.

8.
ACS Appl Mater Interfaces ; 13(24): 29212-29221, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34121385

RESUMO

Hf1-xZrxO2 (HZO) is a complementary metal-oxide-semiconductor (CMOS)-compatible ferroelectric (FE) material with considerable potential for negative capacitance field-effect transistors, ferroelectric memory, and capacitors. At present, however, the deployment of HZO in CMOS integrated circuit (IC) technologies has stalled due to issues related to FE uniformity. Spatially mapping the FE distribution is one approach to facilitating the optimization of HZO thin films. This paper presents a novel technique based on synchrotron X-ray nanobeam absorption spectroscopy capable of mapping the three main phases of HZO (i.e., orthorhombic (O), tetragonal (T), and monoclinic (M)). The practical value of the proposed methodology when implemented in conjunction with kinetic-nucleation modeling is demonstrated by our development of a T → O annealing (TOA) process to optimize HZO films. This process produces an HZO film with the largest polarization values (Ps = 64.5 µC cm-2; Pr = 35.17 µC cm-2) so far, which can be attributed to M-phase suppression followed by low-temperature annealing for the induction of a T → O phase transition.

9.
ACS Nano ; 15(3): 4789-4801, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33645990

RESUMO

Here, a current-accelerated phase cycling by an in situ current-induced oxidation process was demonstrated to reversibly switch the local metallic Cu and semiconducting Cu2O phases of patterned polycrystalline copper nanobelts. Once the Cu nanobelts were applied by a direct-current bias of ∼0.5 to 1 V in air with opposite polarities, the resistance between several hundred ohms and more than MΩ can be manipulated. In practice, the thickness of 60 nm with a moderate grain size inhibiting both electromigration and permanent oxidation is the optimized condition for reversible switching when the oxygen supply is sufficient. More than 40% of the copper localized beneath the positively biased electrode was oxidized assisted by the Joule heating, blocking the current flow. On the contrary, the reduction reaction of Cu2O was activated by the thermally assisted electromigration of Cu atoms penetrating the interlayer at the reverse bias. Finally, based on a high on/off ratio, the fast switching and the scalable production, reusable feasibility based on copper nanobelts such as the memristor array was demonstrated.

10.
J Synchrotron Radiat ; 27(Pt 1): 217-221, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868755

RESUMO

Time-resolved X-ray excited optical luminescence (TR-XEOL) was developed successfully for the 23A X-ray nanoprobe beamline located at the Taiwan Photon Source (TPS). The advantages of the TR-XEOL facility include (i) a nano-focused X-ray beam (<60 nm) with excellent spatial resolution and (ii) a streak camera that can simultaneously record the XEOL spectrum and decay time. Three time spans, including normal (30 ps to 2 ns), hybrid (30 ps to 310 ns) and single (30 ps to 1.72 µs) bunch modes, are available at the TPS, which can fulfil different experimental conditions involving samples with various lifetimes. It is anticipated that TR-XEOL at the TPS X-ray nanoprobe could provide great characterization capabilities for investigating the dynamics of photonic materials.

11.
Sci Rep ; 9(1): 207, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659221

RESUMO

The multifunctional hard X-ray nanoprobe at Taiwan Photon Source (TPS) exhibits the excellent ability to simultaneously characterize the X-ray absorption, X-ray excited optical luminescence (XEOL) as well as the dynamics of XEOL of materials. Combining the scanning electron microscope (SEM) into the TPS 23A end-station, we can easily and quickly measure the optical properties to map out the morphology of a ZnO microrod. A special phenomenon has been observed that the oscillations in the XEOL associated with the confinement of the optical photons in the single ZnO microrod shows dramatical increase while the X-ray excitation energy is set across the Zn K-edge. Besides having the nano-scale spatial resolution, the synchrotron source also gives a good temporal domain measurement to investigate the luminescence dynamic process. The decay lifetimes of different emission wavelengths and can be simultaneously obtained from the streak image. Besides, SEM can provide the cathodoluminescence (CL) to be a complementary method to analyze the emission properties of materials, we anticipate that the X-ray nanoprobe will open new avenues with great characterization ability for developing nano/microsized optoelectronic devices.

12.
Opt Express ; 26(3): 2731-2739, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401809

RESUMO

Polarization-dependent hard X-ray excited optical luminescence (XEOL) was used to study not only the optical properties but also the crystallographic orientations of a non-polar a-plane ZnO wafer. In addition to a positive-edge jump and extra oscillations in the near-band-edge (NBE) XEOL yield, we observed a blue shift of the NBE emission peak that follows the polarization-dependent X-ray absorption near-edge structure (XANES) as the X-ray energy is tuned across the Zn K-edge. This NBE blue shift is caused by the larger X-ray absorption, generating higher free carriers to reduce the exciton-LO phonon coupling, which causes a decrease in the exciton activation energy. The extra oscillations in XANES and XEOL as the polarization is set parallel to the c-axis is attributed to simultaneous excitations of the Zn 4p - O 2pπ -bond along the c-axis and the bilayer σ-bond, whereas only the σ-bond is excited when the polarization is perpendicular to the c-axis. The polarization-dependent XEOL spectra can be used to determine the crystallographic orientations.

13.
Opt Express ; 23(17): 21719-29, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368150

RESUMO

We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.

14.
Chemistry ; 19(3): 905-15, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23197430

RESUMO

A controlled composition-based method--that is, the microwave-assisted ethylene glycol (MEG) method--was successfully developed to prepare bimetallic Pt(x)Ru(100-x)/C nanoparticles (NPs) with different alloy compositions. This study highlights the impact of the variation in alloy composition of Pt(x)Ru(100-x)/C NPs on their alloying extent (structure) and subsequently their catalytic activity towards the methanol oxidation reaction (MOR). The alloying extent of these Pt(x)Ru(100-x)/C NPs has a strong influence on their Pt d-band vacancy and Pt electroactive surface area (Pt ECSA); this relationship was systematically evaluated by using X-ray absorption (XAS), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), density functional theory (DFT) calculations, and electrochemical analyses. The MOR activity depends on two effects that act in cooperation, namely, the number of active Pt sites and their activity. Here the number of active Pt sites is associated with the Pt ECSA value, whereas the Pt-site activity is associated with the alloying extent and Pt d-band vacancy (electronic) effects. Among the Pt(x)Ru(100-x)/C NPs with various Pt:Ru atomic ratios (x = 25, 50, and 75), the Pt(75)Ru(25)/C NPs were shown to be superior in MOR activity on account of their favorable alloying extent, Pt d-band vacancy, and Pt ECSA. This short study brings new insight into probing the synergistic effect on the surface reactivity of the Pt(x)Ru(100-x)/C NPs, and possibly other bimetallic Pt-based alloy NPs.


Assuntos
Carbono/química , Metanol/química , Nanopartículas/química , Platina/química , Rutênio/química , Catálise , Técnicas Eletroquímicas , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície
15.
ACS Nano ; 5(12): 9370-81, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22047129

RESUMO

Although bimetallic core@shell structured nanoparticles (NPs) are achieving prominence due to their multifunctionalities and exceptional catalytic, magnetic, thermal, and optical properties, the rationale underlying their design remains unclear. Here we report a kinetically controlled autocatalytic chemical process, adaptable for use as a general protocol for the fabrication of bimetallic core@shell structured NPs, in which a sacrificial Cu ultrathin layer is autocatalytically deposited on a dimensionally stable noble-metal core under kinetically controlled conditions, which is then displaced to form an active ultrathin metal-layered shell by redox-transmetalation. Unlike thermodynamically controlled under-potential deposition processes, this general strategy allows for the scaling-up of production of high-quality core-shell structured NPs, without the need for any additional reducing agents and/or electrochemical treatments, some examples being Pd@Pt, Pt@Pd, Ir@Pt, and Ir@Pd. Having immediate and obvious commercial potential, Pd@Pt NPs have been systematically characterized by in situ X-ray absorption, electrochemical-FTIR, transmission electron microscopy, and electrochemical techniques, both during synthesis and subsequently during testing in one particularly important catalytic reaction, namely, the oxygen reduction reaction, which is pivotal in fuel cell operation. It was found that the bimetallic Pd@Pt NPs exhibited a significantly enhanced electrocatalytic activity, with respect to this reaction, in comparison with their monometallic counterparts.


Assuntos
Galvanoplastia/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Paládio/química , Platina/química , Catálise , Cristalização/métodos , Cinética , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
16.
Chemistry ; 17(38): 10724-35, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21837730

RESUMO

Two methods were used to prepare bimetallic Pt(3)Cr(1)/C nanocatalysts with similar composition but different alloying extent (structure). We investigated how these differences in alloying extent affect the catalytic activity, stability and selectivity in the oxygen reduction reaction (ORR). One method, based on slow thermal decomposition of the Cr precursor at a rate that matches that of chemical reduction of the Pt precursor, allows fine control of the composition of the Pt(3)Cr(1)/C alloy, whereas the second approach, using the ethylene glycol method, results in considerable deviation (>25 %) from the projected composition. Consequently, these two methods lead to variations in the alloying extent that strongly influence the Pt d-band vacancy and the Pt electroactive surface area (Pt ESCA). This relationship was systematically evaluated by transmission electron microscopy, X-ray absorption near edge structure spectroscopy, and electrochemical analysis. The ORR activity depends on two effects that nullify each other, namely, the number of active Pt sites and their activity. The Pt-site activity is more dominant in governing the ORR activity. The selectivity of the nanocatalyst towards the ORR and the competitive methanol oxidation reaction (MOR) depend on these two effects acting in cooperation to give enhanced ORR activity with suppressed MOR. The number of active Pt sites is associated with the Pt ESCA value, while Pt-site activity is associated with the alloying extent and Pt d-band vacancy (electronic) effects. The presence of Cr atoms in Pt(3)Cr(1)/C enhances stability during electrochemical treatment. Overall, the Pt(3)Cr(1)/C catalyst prepared by controlled-composition synthesis was shown to be superior in ORR activity, selectivity and stability owing to its favorable alloying extent, Pt d-band vacancy, and Pt ESCA.


Assuntos
Carbono/química , Cromo/química , Nanopartículas Metálicas/química , Oxigênio/química , Platina/química , Ligas/química , Catálise , Metanol/química , Oxirredução
17.
J Phys Condens Matter ; 22(3): 036003, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21386301

RESUMO

We report the observation of a modulated structure and a ferromagnetic insulating state in a high quality single crystal of a nine-layer BaRuO(3). Using x-ray scattering, the modulated satellites were observed to double the unit cell along the c-axis at low temperature. The ferromagnetic insulating state is confirmed by magnetic and resistivity measurements. Analyzing the peak profiles from the modulation and host structure respectively, showed a lattice distortion at T∼55 K. These findings elucidate the intimate relationship between ferromagnetism and lattice distortion in a nine-layer BaRuO(3).

18.
J Synchrotron Radiat ; 16(Pt 1): 97-104, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19096180

RESUMO

At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small-angle X-ray scattering (SAXS) beamline has been installed with an in-achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X-ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (DeltaE/E approximately 2 x 10(-4)) in the energy range 5-23 keV, or by a double Mo/B4C multilayer monochromator for 10-30 times higher flux ( approximately 10(11) photons s(-1)) in the 6-15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of approximately 0.9 mm x 0.3 mm (horizontal x vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing-incidence SAXS (GISAXS) from liquid surfaces. Two online beam-position monitors separated by 8 m provide an efficient feedback control for an overall beam-position stability in the 10 microm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray-tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core-shell quantum dots) and GISAXS from liquid surfaces.

19.
J Synchrotron Radiat ; 14(Pt 4): 320-5, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17587656

RESUMO

Using a superconducting-wavelength-shifter X-ray source with a photon flux density of 10(11)-10(13) photons s(-1) mrad(-1) (0.1% bandwidth)(-1) (200 mA)(-1) in the energy range 5-35 keV, three hard X-ray beamlines, BL01A, BL01B and BL01C, have been designed and constructed at the 1.5 GeV storage ring of the National Synchrotron Radiation Research Center (NSRRC). These have been designed for structure-related research using X-ray imaging, absorption, scattering and diffraction. The branch beamline BL01A, which has an unmonochromatized beam, is suitable for phase-contrast X-ray imaging with a spatial resolution of 1 microm and an imaging efficiency of one frame per 10 ms. The main beamline BL01B has 1:1 beam focusing and a medium energy resolution of approximately 10(-3). It has been designed for small-angle X-ray scattering and transmission X-ray microscopy, used, respectively, in anomalous scattering and nanophase-contrast imaging with 30 nm spatial resolution. Finally, the branch beamline BL01C, which features collimating and focusing mirrors and a double-crystal monochromator for a high energy resolution of approximately 10(-4), has been designed for X-ray absorption spectroscopy and high-resolution powder X-ray diffraction. These instruments, providing complementary tools for studying multiphase structures, have opened up a new research trend of integrated structural study at the NSRRC, especially in biology and materials. Examples illustrating the performances of the beamlines and the instruments installed are presented.

20.
Langmuir ; 23(10): 5802-9, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17425346

RESUMO

The chemical state and formation mechanism of Pt-Ru nanoparticles (NPs) synthesized by using ethylene glycol (EG) as a reducing agent and their stability have been examined by in situ X-ray absorption spectroscopy (XAS) at the Pt LIII and Ru K edges. It appears that the reduction of Pt(IV) and Ru(III) precursor salts by EG is not a straightforward reaction but involves different intermediate steps. The pH control of the reaction mixture containing Pt(IV) and Ru(III) precursor salts in EG to 11 led to the reduction of Pt(IV) to Pt(II) corresponding to [PtCl4](2-) whereas Ru(III)Cl3 is changed to the [Ru(OH)6](3-) species. Refluxing the mixture containing [PtCl4](2-) and [Ru(OH)6](3-) species at 160 degrees C for 0.5 h produces Pt-Ru NPs as indicated by the presence of Pt and Ru in the first coordination shell of the respective metals. No change in XAS structural parameters is found when the reaction time is further increased, indicating that the Pt-Ru NPs formed are extremely stable and less prone to aggregation. XAS structural parameters suggest a Pt-rich core and a Ru-rich shell structure for the final Pt-Ru NPs. Due to the inherent advantages of the EG reduction method, the atomic distribution and alloying extent of Pt and Ru in the Pt-Ru NPs synthesized by the EG method are higher than those of the Pt-Ru/C NPs synthesized by a modified Watanabe method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA