RESUMO
Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.
Assuntos
Aerossóis , Poluentes Atmosféricos , Modelos Químicos , Termodinâmica , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Material Particulado/química , Material Particulado/análise , Concentração de Íons de Hidrogênio , Tamanho da PartículaRESUMO
The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health. We recently developed a novel and facile water-probe-based method for directly measuring of the pH for micrometer-size droplets, providing a promising technique to better understand aerosol acidity in the atmosphere. The complex chemical composition of fine particles in the ambient air, however, poses certain challenges to using a water-probe for pH measurement, including interference from interactions between compositions and the influence of similar compositions on water structure. To explore the universality of our method, it was employed to measure the pH of ammonium, nitrate, carbonate, sulfate, and chloride particles. The pH of particles covering a broad range (0-14) were accurately determined, thereby demonstrating that our method can be generally applied, even to alkaline particles. Furthermore, a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the water-probe. The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects. Using the spectral library, all ions were identified and their concentrations were determined, in turn allowing successful pH measurement of multicomponent (ammonium-sulfate-nitrate-chloride) particles. Insights into the synergistic effect of Cl-, NO3-, and NH4+ depletion obtained with our approach revealed the interplay between pH and volatile partitioning. Given the ubiquity of component partitioning and pH variation in particles, the water probe may provide a new perspective on the underlying mechanisms of aerosol aging and aerosol-cloud interaction.
Assuntos
Aerossóis , Monitoramento Ambiental , Análise Espectral Raman , Água , Concentração de Íons de Hidrogênio , Análise Espectral Raman/métodos , Água/química , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera/química , Material Particulado/análiseRESUMO
Solubility largely determines the impacts of aerosol Fe on marine ecosystems and human health. Currently, modeling studies have large uncertainties in aerosol Fe solubility due to inadequate understanding of the sources of dissolved Fe. This work investigated seasonal variations of Fe solubility in coarse and fine aerosols in Qingdao, a coastal city in the Northwest Pacific, and utilized a receptor model for source apportionment of total and dissolved aerosol Fe. Desert dust was found to be the main source of total Fe, contributing 65 and 81% annually to total Fe in coarse and fine particles, respectively; in contrast, dissolved aerosol Fe originated primarily from combustion, industrial, and secondary sources. The annual average contributions to dissolved Fe in coarse and fine particles were 68 and 47% for the secondary source and 32 and 33% for the combustion source, respectively. Aerosol Fe solubility was found to be highest in summer and lowest in spring, showing seasonal patterns similar to those of aerosol acidity. Increase in Fe solubility in atmospheric particles, when compared to desert dust, was mainly caused by secondary processing and combustion emission, and the effect of secondary processes was dictated by aerosol acidity and liquid water content.
Assuntos
Aerossóis , Poeira , Ferro , Solubilidade , Ferro/química , Estações do Ano , Poluentes Atmosféricos/análise , Tamanho da Partícula , Material Particulado , Monitoramento AmbientalRESUMO
Whether maternal exposure to dust-sourced particulate matter (hereafter, dust PM2.5) is associated with stillbirth remains unknown. We adopted a sibling-matched case-control design to analyze 9332 stillbirths and 17,421 live births. We associated the risk of stillbirth simultaneously with dust and nondust components of PM2.5 and developed a nonlinear joint exposure-response function. Next, we estimated the burden of stillbirths attributable to the PM2.5 mixture. The concentration index was used to evaluate whether the burden of PM2.5-related stillbirths was disproportionally distributed among pregnancies exposed to dust-rich particles. Each 10 µg/m3 increase in dust PM2.5 was associated with a 14.5% (95% confidence interval: 5.5, 24.2%) increase in the odds of stillbirth. Based on the risk assessment across 137 countries, sand dust contributed to about 15% of the PM2.5 exposure but to about 45% of the PM2.5-related stillbirths during 2003-2019. In 2015, 30% of the PM2.5-related stillbirths were concentrated within 15% of pregnancies exposed to the dust-richest PM2.5. The index increased in subregions, such as South Asia, suggesting the growth of health inequality due to exposure to dust PM2.5. Based on our findings, land management, such as halting desertification, will help prevent stillbirths and reduce global maternal health inequality.
Assuntos
Poeira , Material Particulado , Natimorto , Natimorto/epidemiologia , Humanos , Feminino , Gravidez , Poluentes Atmosféricos , Areia , Exposição Materna , Poluição do Ar , Países em Desenvolvimento , Estudos de Casos e ControlesRESUMO
Addressing environmental factors has recently been recommended to curb the growing trend of anemia in low- and middle-income countries (LMICs). Fine particulate matter (PM2.5) generated by dust storms were concentrated in place with a high prevalence of anemia. In a multicounty, multicenter study, we analyzed the association between anemia and life-course averaged exposure to dust PM2.5 among children aged <5 years based on 0.65 million records from 47 LMICs. In the fully adjusted mixed effects model, each 10 µg/m3 increase in life-course averaged exposure to dust PM2.5 was associated with a 9.3% increase in the odds of anemia. The estimated exposure-response association was nonlinear, with a greater effect of dust PM2.5 exposure seen at low concentrations. Applying this association, we found that, in 2017, among all children aged <5 years in the 125 LMICs, dust PM2.5 contributed to 37.98 million cases of anemia. Results indicated that dust PM2.5 contributed a heavier burden than all of the well-identified risk factors did, except for iron deficiency. Our study revealed that long-term exposure to dust PM2.5 can be a novel risk factor, pronouncedly contributed to the burden of child anemia in LMICs, affected by land degradations or arid climate.
Assuntos
Anemia , Poeira , Material Particulado , Humanos , Anemia/epidemiologia , Pré-Escolar , Feminino , Masculino , Países em Desenvolvimento , Exposição Ambiental , Lactente , Fatores de RiscoRESUMO
Uric acid particles contribute to kidney stones, and natural processes for the elimination of stones depend on solute-solvent interactions. The process of uric acid dissolution has previously been understood via the lens of solubility; however, for pure and mixed salt solutions, these approaches do not provide a comprehensive picture of nanoscale particle solution thermodynamics. Unlike solubility measurements, water activity measurements provide us with information about the chemical potential responsible for the migration of water molecules driving the dissolution of particles. In this work, we used in situ experimental tools to estimate water activity values for pure uric acid aqueous droplets at different stages of droplet growth. The process of cloud formation, i.e., water condensation on a solute particle resulting in aqueous droplet formation, was leveraged to compare the water affinity for nanosized uric acid particles with a well-studied inorganic salt, sodium chloride. Specifically, we investigated microscopic uric acid particles (nanoparticles <300 nm, amorphous and super micron particles >5 µm, crystalline) and the mechanism of water uptake. The growth of droplet volume (Growth Factor, GF) for uric acid particles is experimentally observed for supermicrometer crystalline particles (>1 µm) at subsaturated humidity conditions (<100% RH). In addition, the water activity of submicrometer-size uric acid particles is estimated under subsaturated and supersaturated humidity conditions. These measurements provide us with information about the volume growth of droplets as water condenses in particles exposed to different humidity conditions. Our observations under subsaturated humidity conditions show that the uric acid particles have limited volume growth (<1% change per volume and <10% change per volume for crystalline and amorphous measurement, respectively). From the experimental data, the affinity of uric acid solute with water as a solvent is quantified in terms of water activity.
RESUMO
Heterogeneous reaction of gas phase NO2 with atmospheric humic-like substances (HULIS) is potentially an important source of volatile organic compounds (VOCs) including nitrogen (N)-containing compounds, a class of brown carbon of emerging importance. However, the role of ubiquitous water-soluble aerosol components in this multiphase chemistry, namely nitrate and iron ions, remains largely unexplored. Here, we used secondary electrospray ionization ultrahigh-resolution mass spectrometry for real-time measurements of VOCs formed during the heterogeneous reaction of gas phase NO2 with a solution containing gallic acid (GA) as a proxy of HULIS at pH 5 relevant for moderately acidic aerosol particles. Results showed that the number of detected N-containing organic compounds largely increased from 4 during the NO2 reaction with GA in the absence of nitrate and iron ions to 55 in the presence of nitrate and iron ions. The N-containing compounds have reduced nitrogen functional groups, namely amines, imines and imides. These results suggest that the number of N-containing compounds is significantly higher in deliquescent aerosol particles due to the influence of relatively higher ionic strength from nitrate ions and complexation/redox reactivity of iron cations compared to that in the dilute aqueous phase representative of cloud, fog, and rain water.
RESUMO
Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.
RESUMO
Heterogeneous reaction of NO2 with mineral dust aerosol may play important roles in troposphere chemistry, and has been investigated by a number of laboratory studies. However, the influence of mineralogy on this reaction has not been well understood, and its impact on aerosol hygroscopicity is not yet clear. This work investigated heterogeneous reactions of NO2 (â¼10 ppmv) with K-feldspar, illite, kaolinite, montmorillonite and Arizona Test Dust (ATD) at room temperature as a function of relative humidity (<1% to 80%) and reaction time (up to 24 hr). Heterogeneous reactivity towards NO2 was low for illite, kaolinite, montmorillonite and ATD, and uptake coefficients of NO2, γ(NO2), were determined to be around or smaller than 1×10-8; K-feldspar exhibited higher reactivity towards NO2, and CaCO3 is most reactive among the nine mineral dust samples considered in this and previous work. After heterogeneous reaction with NO2 for 24 hr, increase in hygroscopicity was nearly insignificant for illite, kaolinite and montmorillonite, and small but significant for K-feldspar; in addition, large increase in hygroscopicity was observed for ATD, although the increase in hygroscopicity was still smaller than CaCO3.
Assuntos
Poeira , Dióxido de Nitrogênio , Poeira/análise , Argila , Caulim , Bentonita , Arizona , Minerais , AerossóisRESUMO
Mineral dust is an important type of ice nucleating particles in the troposphere; however, the effects of heterogeneous reactions on ice nucleation (IN) activities of mineral dust remain to be elucidated. A droplet-freezing apparatus (Guangzhou Institute of Geochemistry Ice Nucleation Apparatus, GIGINA) was developed in this work to measure IN activities of atmospheric particles in the immersion freezing mode, and its performance was validated by a series of experimental characterizations. This apparatus was then employed to measure IN activities of feldspar and Arizona Test Dust (ATD) particles before and after heterogeneous reaction with NO2 (10±0.5 ppmv) at 40% relative humidity. The surface coverage of nitrate, θ(NO3-), increased to 3.1±0.2 for feldspar after reaction with NO2 for 6 hr, and meanwhile the active site density per unit surface area (ns) at -20°C was reduced from 92±5 to <1.0 cm-2 by about two orders of magnitude; however, no changes in nitrate content or IN activities were observed for further increase in reaction time (up to 24 hr). Both nitrate content and IN activities changed continuously with reaction time (up to 24 hr) for ATD particles; after reaction with NO2 for 24 hr, θ(NO3-) increased to 1.4±0.1 and ns at -20°C was reduced from 20±4 to 9.7±1.9 cm-2 by a factor of â¼2. Our work suggests that heterogeneous reaction with NO2, an abundant reactive nitrogen species in the troposphere, may significantly reduce IN activities of mineral dust in the immersion freezing mode.
RESUMO
Deposition of anthropogenic aerosols may contribute significantly to dissolved Fe in the open ocean, affecting marine primary production and biogeochemical cycles; however, fractional solubility of Fe is not well understood for anthropogenic aerosols. This work investigated mass fractions, solubility, speciation and isotopic compositions of Fe in coal and municipal waste fly ash. Compared to desert dust (3.1 ± 1.1%), the average mass fraction of Fe was higher in coal fly ash (6.2 ± 2.7%) and lower in municipal waste fly ash (2.6 ± 0.4%), and the average Fe/Al ratios were rather similar for the three types of particles. Municipal waste fly ash showed highest Fe solubility (1.98 ± 0.43%) in acetate buffer (pH: 4.3), followed by desert dust (0.43 ± 0.30%) and coal fly ash (0.24 ± 0.28%), suggesting that not all the anthropogenic aerosols showed higher Fe solubility than desert dust. For the samples examined in our work, amorphous Fe appeared to be an important controlling factor for Fe solubility, which was not correlated with particle size or BET surface area. Compared to desert dust (-0.05 to 0.21), coal and municipal waste fly ash showed similar or even higher δ56Fe values for total Fe (range: 0.05 to 0.75), implying that the presence of coal or municipal waste fly ash may not be able to explain significantly smaller δ56Fe values reported for total Fe in ambient aerosols affected by anthropogenic sources.
Assuntos
Cinza de Carvão , Carvão Mineral , Aerossóis , Cinza de Carvão/análise , Poeira , Incineração , Ferro/química , SolubilidadeRESUMO
Hydroxyalkylsulfonates may contribute significantly to atmospheric particles; however, their hygroscopic properties and cloud condensation nuclei (CCN) activities remain unknown. In this study, three complementary techniques were utilized to examine the hygroscopicity of sodium hydroxymethanesulfonate (NaHMS), sodium 2-hydroxyethylsulfonate (NaHES), and ammonium 2-hydroxyethylsulfonate (NH4HES) under subsaturated and supersaturated environments. The mass changes in the three hydroxyalkylsulfonates at different relative humidities at 25 °C were examined by a vapor sorption analyzer, and the mass growth factors were measured to be 3.25 ± 0.01 for NaHMS, 3.32 ± 0.02 for NaHES, and 3.34 ± 0.04 for NH4HES at 90% RH. Their hygroscopic growth was investigated by a humidity tandem differential mobility analyzer, and hygroscopic growth factors were 1.78 ± 0.02 for NaHMS, 1.71 ± 0.02 for NaHES, and 1.68 ± 0.03 for NH4HES at 90% RH. Furthermore, the CCN activities of NaHMS, NaHES, and NH4HES were explored, and their single hygroscopicity parameters (κccn) were measured to be 0.649 ± 0.097 for NaHMS, 0.559 ± 0.069 for NaHES, and 0.434 ± 0.073 for NH4HES. In addition, the hygroscopic growth and CCN activities of binary mixtures of ammonium sulfate with one of the three hydroxyalkylsulfonates were also examined.
Assuntos
Alcanossulfonatos/química , Gases , Aerossóis , Sulfato de Amônio , Umidade , MolhabilidadeRESUMO
Aerosol phosphorus (P) and trace metals derived from natural processes and anthropogenic emissions have considerable impacts on ocean ecosystems, human health, and atmospheric processes. However, the abundance and fractional solubility of P and trace metals in combustion ash and desert dust, which are two of the largest emission sources of aerosols, are still not well understood. In this study, the abundance and fractional solubility of P and trace metals in seven coal fly ash samples, two municipal waste fly ash samples, and three desert dust samples were experimentally examined. It was found that the abundance of aluminum (Al) in combustion ash was comparable or even higher than that in desert dust, and, therefore, care should be taken when using Al as a tracer of desert dust. The abundance and fractional solubility of P were higher in combustion ash, with a soluble P content ~4-6 times higher than that of the desert dust, indicating that combustion ash could be an important source of bioavailable P in the atmosphere. Except for Mn, the abundance and fractional solubility of other heavy metals were higher in the combustion ash compared to the desert dust, indicating the potential importance of combustion ash in ocean ecosystems, human health, and atmospheric processes. In contrast, both the abundance and solubility of Mn were highest in the desert dust, indicating a potentially important source of soluble Mn in the atmosphere. The fractional solubilities of P and trace metals are significantly affected by acidity and ions in the extraction solutions, and it is suggested that a buffer solution can better represent the acidity of the aqueous system in the true atmospheric environment. The results of this study improve our understanding of the sources of bioavailable and reactive P and trace metals in ambient aerosols.
Assuntos
Poeira , Metais Pesados , Disponibilidade Biológica , Cinza de Carvão , Poeira/análise , Ecossistema , Humanos , Fósforo , SolubilidadeRESUMO
Deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH), the two parameters that regulate phase state and hygroscopicity of substances, play important roles in atmospheric science and many other fields. A large number of experimental studies have measured the DRH and ERH values of compounds with atmospheric relevance, but these values have not yet been summarized in a comprehensive manner. In this work, we develop for the first-of-its-kind a comprehensive database which compiles the DRH and ERH values of 110 compounds (68 inorganics and 42 organics) measured in previous studies, provide the preferred DRH and ERH values at 298 K for these compounds, and discuss the effects of a few key factors (e.g., temperature and particle size) on the measured DRH and ERH values. In addition, we outline future work that will broaden the scope of this database and enhance its accessibility.
RESUMO
Atmospheric aerosol acidity impacts numerous physicochemical processes, but the determination of particle pH remains a significant challenge due to the nonconservative nature of the H+ concentration ([H+]). Traditional measurements have difficulty in describing the practical state of an aerosol because they comprise chemical components or hypotheses that change the nature of the particles. In this work, we present a direct pH measurement that uses water as a general probe to detect [H+] in individual particles by micro-Raman spectroscopy. Containing the vibrational bands of ions and water influenced by ions, the spectra of hydrated ion were decomposed from the solution spectra as standard spectra by multivariate curve resolution analysis. Meanwhile, ratios of hydrated ions were calculated between the Raman spectra and standard spectra to evaluate concentration profiles of each ion. It demonstrated that good quantitative models between the ratio and concentration for all ions including H+ can be built with correlation coefficients (R2) higher than 0.95 for the solutions. The method was further applied to individual particle pH measurement. The pH value of sulfate aerosol particles was calculated, and the standard error was 0.09 using pH values calculated from the [HSO4-]/[SO42-] as a reference. Furthermore, the applicability of the method was proven by detecting the pH value of chloride particles. Therefore, utilizing water, the most common substance, as the spectroscopic probe to measure [H+] without restriction of the ion system, this method has potential to measure the pH value of atmospheric particles with various compounds, although more work needs to be done to improve the sensitivity of the method.
Assuntos
Análise Espectral Raman , Água , Aerossóis , Concentração de Íons de Hidrogênio , VibraçãoRESUMO
Density (ρ) is one of the most important physical properties of aerosol particles. Owing to the complex nature of aerosols and the challenges of measuring them, effective density (ρe) is generally used as an alternative measure. Various methods have been developed to quantify the ρe of aerosols, which provide powerful technical support and understanding of their physical properties. Here, we present a comprehensive review of the characterisation techniques of ρe currently used in the literature. Overall, six categories of measurement are identified, and the typical configuration, measurement principles, errors and field applications of each are demonstrated. Their respective advantages and disadvantages are also discussed to improve their application. Finally, we outline future directions for further technical improvement in, and instrumental development for, ρe measurement.
RESUMO
Mineral dust, soil, and sea salt aerosols are among the most abundant primary inorganic aerosols in the atmosphere, and their hygroscopicity affects the hydrological cycle and global climate. We investigated the hygroscopic behaviors of six Na- and K-containing salts commonly found in those primary organic aerosols. Their hygroscopic growths as a function of relative humidity (RH) agree well with thermodynamic model prediction. Temperature dependence of deliquescence RH (DRH) values for five of those salts was also investigated, which are comparable to those in literature within 1%-2% RH, most showing negative dependence on temperature. Hygroscopic growth curves of real-world soil and sea salt samples were also measured. The hygroscopic growths of two more-hydroscopic saline soil samples and of sea salt can be predicted by the thermodynamic model based on the measured water-soluble ionic composition. The substantial amounts of water-soluble ions, including Na+ and K+, in saline soil samples imply that even nascent saline soil samples are quite hygroscopic at high-RH (>80%) conditions. For three less-hygroscopic dust samples, however, measurements showed higher water uptake ability than that predicted by the thermodynamic model. The small amount of water taken up by less-hygroscopic dust samples suggests that dust particles might contain thin layers of water even to very low RH. The results of this study provide a comprehensive characterization of the hygroscopicity of Na- and K-containing salts as related to their roles in the hygroscopic behaviors of saline mineral dusts and sea salt aerosols.
Assuntos
Poluentes Atmosféricos/análise , Poeira , Aerossóis/análise , Minerais , Potássio , Sais , Sódio , MolhabilidadeRESUMO
Sulfate and nitrate from secondary reactions remain as the most abundant inorganic species in atmospheric particle matter (PM). Their formation is initiated by oxidation (either in gas phase or particle phase), followed by neutralization reaction primarily by NH3, or by other alkaline species such as alkaline metal ions if available. The different roles of NH3 and metal ions in neutralizing H2SO4 or HNO3, however, are seldom investigated. Here we conducted semi-continuous measurements of SO42-, NO3-, NH4+, and their gaseous precursors, as well as alkaline metal ions (Na+, K+, Ca2+, and Mg2+) in wintertime Beijing. Analysis of aerosol acidity (estimated from a thermodynamic model) indicated that preferable sulfate formation was related to low pH conditions, while high pH conditions promote nitrate formation. Data in different mass fraction ranges of alkaline metal ions showed that in some ranges the role of NH3 was replaced by alkaline metal ions in the neutralization reaction of H2SO4 and HNO3 to form particulate SO42- and NO3-. The relationships between mass fractions of SO42- and NO3- in those ranges of different alkaline metal ion content also suggested that alkaline metal ions participate in the competing neutralization reaction of sulfate and nitrate. The implication of the current study is that in some regions the chemistry to incorporate sulfur and nitrogen into particle phase might be largely affected by desert/fugitive dust and sea salt, besides NH3. This implication is particularly relevant in coastal China and those areas with strong influence of dust storm in the North China Plain (NCP), both of which host a number of megacities with deteriorating air quality.
RESUMO
Atmospheric processing may significantly increase solubility of iron in mineral dust, but the effects of heterogeneous reactions on iron solubility have been poorly understood. In this work, we investigated heterogeneous reaction of NO2 (15⯱â¯1 and 2.5⯱â¯0.1 ppmv, equal to â¼3.7â¯×â¯1014 and â¼6.2â¯×â¯1013 molecule cm-3) with hematite, magnetite and goethite at different relative humidities (RH, 0-90%), and changes in particulate nitrate and soluble iron due to heterogeneous reaction with NO2 were quantified as a function of time (up to 24â¯h). After reaction with 2.5⯱â¯0.1 ppmv NO2 for 24â¯h (or less time), hematite and magnetite were fully saturated, while goethite was only partly deactivated. Nitrate yield was largest for goethite, and the mass ratio of formed nitrate to unreacted mineral only reached â¼1% or less after 24â¯h reaction. All the three minerals showed low reactivities towards NO2, and the average reactive uptake coefficients of NO2 in the first 3â¯h were found to beâ¯<â¯5â¯×â¯10-8. In addition, the increase in iron solubility was found to be small and in some cases even insignificant for the three minerals after heterogeneous reaction with NO2 for 24â¯h. Overall, the impacts of heterogeneous reaction of NO2 with hematite, magnetite and goethite on nitrate aerosol formation and iron solubility could be very limited.
Assuntos
Compostos Férricos/química , Óxido Ferroso-Férrico/química , Compostos de Ferro/química , Ferro/química , Minerais/química , Nitratos/análise , Óxidos de Nitrogênio/química , Aerossóis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poeira/análise , Modelos Químicos , SolubilidadeRESUMO
Diesel vehicle exhaust is an important source of carbonaceous aerosols, especially in developing countries, like China. Driving condition impacts diesel vehicle emissions, yet its influence needs further understanding especially on secondary organic aerosol (SOA) formation. In this study tailpipe exhaust from an in-use light duty diesel vehicle at idling and driving speeds of 20 and 40â¯kmâ¯h-1 was introduced respectively into a 30â¯m-3 indoor smog chamber to investigate primary emissions and SOA formation during photo-oxidation. The emission factors of SO2 at 20 and 40â¯kmâ¯h-1 were higher than those at idling, whereas the emission factors of aromatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs) and oxygenated volatile organic compounds (OVOCs) decreased when driving speeds increased. The emission factors of black carbon (BC) and primary organic aerosol (POA) at idling were comparable to those at 20 and 40â¯kmâ¯h-1. The SOA production factors were 0.41⯱â¯0.09â¯gâ¯kg-fuel-1 at idling, approximately 2.5 times as high as those at 20â¯kmâ¯h-1 (0.16⯱â¯0.09â¯gâ¯kg-fuel-1) or 40â¯kmâ¯h-1 (0.17⯱â¯0.09â¯gâ¯kg-fuel-1). Total carbonaceous aerosols, including BC, POA and SOA, from diesel vehicles at 20 and 40â¯kmâ¯h-1 were 60-75% of those at idling, due largely to a reduction in SOA production. Measured AHs and PAHs altogether were estimated to explain <10% of SOA production, and eight major OVOCs could contribute 8.4-23% of SOA production. A preliminary comparison was further made for the same diesel vehicle at idling using diesel oils upgraded from China 3 to China 5 standard. The emission factors of total particle numbers decreased by 38% owing to less nuclei mode particles, which was probably caused by the reducing fuel sulfur content; the emission factors of BC were almost unchanged, the POA emission factors and SOA production factors however decreased by 72% and 37%.