Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
MAGMA ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126439

RESUMO

OBJECTIVE: To assess and improve the reliability of the ultrashort echo time quantitative magnetization transfer (UTE-qMT) modeling of the cortical bone. MATERIALS AND METHODS: Simulation-based digital phantoms were created that mimic the UTE-qMT properties of cortical bones. A wide range of SNR from 25 to 200 was simulated by adding different levels of noise to the synthesized MT-weighted images to assess the effect of SNR on UTE-qMT fitting results. Tensor-based denoising algorithm was applied to improve the fitting results. These results from digital phantom studies were validated via ex vivo rat leg bone scans. RESULTS: The selection of initial points for nonlinear fitting and the number of data points tested for qMT analysis have minimal effect on the fitting result. Magnetization exchange rate measurements are highly dependent on the SNR of raw images, which can be substantially improved with an appropriate denoising algorithm that gives similar fitting results from the raw images with an 8-fold higher SNR. DISCUSSION: The digital phantom approach enables the assessment of the reliability of bone UTE-qMT fitting by providing the known ground truth. These findings can be utilized for optimizing the data acquisition and analysis pipeline for UTE-qMT imaging of cortical bones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA