Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1448938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176032

RESUMO

Background: Osteoporosis (OP), affecting millions around the globe, is a prevalent degenerative condition of the bones characterized by a decrease in bone mineral density (BMD) and an increase in bone fragility. A novel anthropometric measure, the Body Roundness Index (BRI), provides a more accurate assessment of body fat distribution compared to traditional metrics. Using data from the National Health and Nutrition Examination Survey (NHANES), this study aims to explore the relationship between BRI and total BMD in U.S. adults aged 20 and above. Methods: Data from NHANES (2011-2018) were examined, encompassing 9,295 participants following exclusions. Dual-energy X-ray absorptiometry (DXA) was employed to measure BMD. BRI was calculated using waist circumference (WC) and height. The study accounted for variables such as demographic traits, physical exam results, lab test findings, and survey responses. Weighted multivariable linear regression models and smooth curve fitting methods were utilized to assess the relationship between BRI and total BMD. Results: The research found a notable inverse relationship between BRI and total BMD. In the model with full adjustments, an increase of one unit in BRI was linked to a 0.0313 g/cm2 reduction in total BMD (P < 0.0001). Moreover, an inflection point was identified at BRI = 9.5229, where each one-unit rise in BRI beyond this threshold corresponded to a more substantial decrease in total BMD (0.0363 g/cm2). Analysis by subgroups revealed that this negative association was consistent across most demographic and health-related categories. Conclusions: The results demonstrate a notable inverse relationship between BRI and total BMD, indicating that a higher BRI could be associated with lower BMD and a potentially greater risk of developing OP. This underscores the significance of accounting for body fat distribution in preventing OP and advocates for the use of BRI as a valuable marker for early intervention approaches.

2.
Cells ; 13(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38995016

RESUMO

Classical swine fever (CSF) is caused by the classical swine fever virus (CSFV), which poses a threat to swine production. The activation of host innate immunity through linker proteins such as tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) is crucial for the induction of the NF-κB pathway. Recent research has revealed the involvement of mitochondrial antiviral-signaling protein (MAVS) in the interaction with TRAF2, 3, 5, and 6 to activate both the NF-κB and IRF3 pathways. This study revealed that CSFV infection led to the upregulation of TRAF1 mRNA and protein levels; moreover, TRAF1 overexpression inhibited CSFV replication, while TRAF1 knockdown promoted replication, highlighting its importance in the host response to CSFV infection. Additionally, the expression of RIG-I, MAVS, TRAF1, IRF1, and ISG15 were detected in PK-15 cells infected with CSFV, revealing that TRAF1 plays a role in regulating IRF1 and ISG15 within the RIG-I pathway. Furthermore, Co-IP, GST pull-down, and IFA analyses demonstrated that TRAF1 interacted with MAVS and co-localized in the cytoplasm during CSFV infection. Ultimately, TRAF1 acted as a novel member of the TRAF family, bound to MAVS as a linker molecule, and functioned as a mediator downstream of MAVS in the RIG-I/MAVS pathway against CSFV replication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Vírus da Febre Suína Clássica , Fator Regulador 1 de Interferon , Fator 1 Associado a Receptor de TNF , Regulação para Cima , Animais , Vírus da Febre Suína Clássica/fisiologia , Fator 1 Associado a Receptor de TNF/metabolismo , Fator 1 Associado a Receptor de TNF/genética , Suínos , Regulação para Cima/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Transdução de Sinais , Peste Suína Clássica/virologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/genética , Replicação Viral , Linhagem Celular , Citocinas/metabolismo , Ligação Proteica
3.
Front Immunol ; 15: 1392804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868762

RESUMO

Rabies virus (RABV) causes a fatal neurological disease, consisting of unsegmented negative-strand RNA, which encodes five structural proteins (3'-N-P-M-G-L-5'). Apolipoprotein D (ApoD), a lipocalin, is upregulated in the nervous system after injury or pathological changes. Few studies have focused on the role of ApoD during virus infection so far. This study demonstrated that ApoD is upregulated in the mouse brain (in vivo) and C8-D1A cells (in vitro) after RABV infection. By upregulating ApoD expression in C8-D1A cells, we found that ApoD facilitated RABV replication. Additionally, Co-immunoprecipitation demonstrated that ApoD interacted with RABV glycoprotein (G protein). The interaction could promote RABV replication by upregulating the cholesterol level. These findings revealed a novel role of ApoD in promoting RABV replication and provided a potential therapeutic target for rabies.


Assuntos
Apolipoproteínas D , Colesterol , Vírus da Raiva , Raiva , Replicação Viral , Animais , Feminino , Humanos , Masculino , Camundongos , Apolipoproteínas D/metabolismo , Apolipoproteínas D/genética , Encéfalo/virologia , Encéfalo/metabolismo , Linhagem Celular , Colesterol/metabolismo , Células HEK293 , Raiva/metabolismo , Raiva/virologia , Vírus da Raiva/fisiologia , Regulação para Cima
4.
Biomaterials ; 277: 121117, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34517277

RESUMO

Scaffolds functionalized with bone morphogenetic protein-2 (BMP-2) have shown great potential for bone regeneration. However, structural instability and the necessity for supra-physiological dose have thus far limited practical applications for BMP-2. Protein modification and site-specific covalent immobilization of BMP-2 to carrier materials might be optimal strategies to overcome these problems. Here, we report a broadly applicable strategy where the polyhistidine tag-T4 Lysozyme (His6-T4L) was genetically fused at the N-terminus of BMP-2 and used as a protein spacer, which on one hand enhanced protein solubility and stability, and on the other hand mediated site-specific covalent anchoring of BMP-2 upon binding to nickel-chelated nitrilotriacetic acid (Ni-NTA) microparticles (denoted as MPs-His6-T4L-BMP2) to further maximize its rescued activity. We also constructed a novel gelatin-based hydrogel that was crosslinked by transglutaminase (TG) and tannic acid (TA). This hydrogel, when incorporated with MPs-His6-T4L-BMP2, displayed excellent in-situ injectability, thermosensitivity, adhesiveness and improved mechanical properties. The effective loading mode led to a controlled and long-term sustained release of His6-T4L-BMP2, thereby resulting in enhancement of bone regeneration in a critical-sized bone defect. We believe that the protein modification strategy proposed here opens up new route not only for BMP-2 applications, but can be used to inform novel uses for other macromolecules.


Assuntos
Proteína Morfogenética Óssea 2 , Hidrogéis , Proteína Morfogenética Óssea 2/genética , Regeneração Óssea , Gelatina
5.
Biomaterials ; 274: 120895, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34020269

RESUMO

The development of recombinant protein cross-linked injectable hydrogels with good mechanical strength and effective drug loading capacity for bone regeneration is extremely attractive and rarely reported. Here, we report the fabrication of a smart hydrogel delivery system by incorporating a rationally designed T4 lysozyme mutant (T4M) to mediate the localized delivery and synergistic release of Mg2+ and Zn2+ for bone repair. Apart from its intrinsic antibacterial properties, T4M bears abundant free amine groups on its surface to function as effective covalent crosslinkers to strengthen the hydrogel network as well as exhibits specific binding affinity to multivalent cations such as Zn2+. Moreover, the integrin receptor-binding Arg-Gly-Asp (RGD) sequence was introduced onto the C-terminus of T4 lysozyme to improve its cellular affinity and further facilitate rapid tissue regeneration. The final composite hydrogel displays excellent injectability, improved mechanical properties, antibacterial activity, and unique bioactivities. The effective loading of Mg2+/Zn2+ in the hydrogels could mediate the sequential and sustained release of Mg2+ and Zn2+, thereby resulting in synergistic enhancement on bone regeneration through modulation of the MAPK signaling pathway. We believe that the strategy proposed in this paper opens up a new route for developing protein cross-linked smart delivery systems for tissue regeneration.


Assuntos
Hidrogéis , Magnésio , Regeneração Óssea , Íons , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA