Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(9): e2305218, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37847903

RESUMO

Mechanically sensitive tissues (e.g., skeletal muscles) greatly need mechanical stimuli during the development and maturation. The extracellular matrix (ECM) mediates these signals through nonlinear viscoelasticity of collagen networks that are predominant components of the ECM. However, the interactions between cells and ECM form a feedback loop, and it has not yet been possible to determine the degree to which, if any, of the features of matrix nonlinear viscoelasticity affect skeletal muscle development and regeneration. In this study, a nonlinear viscoelastic feature (i.e., strain-enhanced stress relaxation (SESR)) in normal skeletal muscles is observed, which however is almost absent in diseased muscles from Duchenne muscular dystrophy mice. It is recapitulated such SESR feature in vitro and separated the effects of mechanical strain and ECM viscoelasticity on myoblast response by developing a collagen-based hydrogel platform. Both strain and stress relaxation induce myogenic differentiation and myotube formation by C2C12 myoblasts, and myogenesis is more promoted by applying SESR. This promotion can be explained by the effects of SESR on actin polymerization-mediated myocardin related transcription factor (MRTF) nuclear localization and nuclear mechanotransduction. This study represents the first attempt to investigate the SESR phenomenon in skeletal muscles and reveal underlying mechanobiology, which will provide new opportunities for the tissue injury treatments.


Assuntos
Mecanotransdução Celular , Proteínas Nucleares , Transativadores , Fatores de Transcrição , Animais , Camundongos , Músculo Esquelético , Desenvolvimento Muscular , Colágeno
2.
APL Bioeng ; 7(1): 016110, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36845904

RESUMO

Dynamic extracellular matrix (ECM) mechanics plays a crucial role in tissue development and disease progression through regulation of stem cell behavior, differentiation, and fate determination. Periodontitis is a typical case characterized by decreased ECM stiffness within diseased periodontal tissues as well as with irreversible loss of osteogenesis capacity of periodontal tissue-derived human periodontal tissue-derived MSCs (hMSCs) even returning back to a physiological mechanical microenvironment. We hypothesized that the hMSCs extendedly residing in the soft ECM of diseased periodontal tissues may memorize the mechanical information and have further effect on ultimate cell fate besides the current mechanical microenvironment. Using a soft priming and subsequent stiff culture system based on collagen-modified polydimethylsiloxane substrates, we were able to discover that extended preconditioning on soft matrices (e.g., 7 days of exposure) led to approximately one-third decrease in cell spreading, two-third decrease in osteogenic markers (e.g., RUNX2 and OPN) of hMSCs, and one-thirteenth decrease in the production of mineralized nodules. The significant loss of osteogenic ability may attribute to the long-term residing of hMSCs in diseased periodontal tissue featured with reduced stiffness. This is associated with the regulation of transcriptional activity through alterations of subcellular localization of yes-associated protein and nuclear feature-mediated chromatin organization. Collectively, we reconstructed phenomena of irreversible loss of hMSC osteogenesis capacity in diseased periodontal tissues in our system and revealed the critical effect of preconditioning duration on soft matrices as well as the potential mechanisms in determining ultimate hMSC fate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA