Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223585

RESUMO

This study utilized data from 140,294 prostate cancer cases from the Surveillance, Epidemiology, and End Results (SEER) database. Here, 10 different machine learning algorithms were applied to develop treatment options for predicting patients with prostate cancer, differentiating between surgical and non-surgical treatments. The performances of the algorithms were measured using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value. The Shapley Additive Explanations (SHAP) method was employed to investigate the key factors influencing the prediction process. Survival analysis methods were used to compare the survival rates of different treatment options. The CatBoost model yielded the best results (AUC = 0.939, sensitivity = 0.877, accuracy = 0.877). SHAP interpreters revealed that the T stage, cancer stage, age, cores positive percentage, prostate-specific antigen, and Gleason score were the most critical factors in predicting treatment options. The study found that surgery significantly improved survival rates, with patients undergoing surgery experiencing a 20.36% increase in 10-year survival rates compared with those receiving non-surgical treatments. Among surgical options, radical prostatectomy had the highest 10-year survival rate at 89.2%. This study successfully developed a predictive model to guide treatment decisions for prostate cancer. Moreover, the model enhanced the transparency of the decision-making process, providing clinicians with a reference for formulating personalized treatment plans.

2.
Comput Biol Med ; 181: 109028, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173485

RESUMO

Despite extensive algorithms for epilepsy prediction via machine learning, most models are tailored for offline scenarios and cannot handle actual scenarios where data changes over time. Catastrophic forgetting(CF) for learned electroencephalogram(EEG) data occurs when EEG changes dynamically in the clinical setting. This paper implements a continual learning(CL) strategy Memory Projection(MP) for epilepsy prediction, which can be combined with other algorithms to avoid CF. Such a strategy enables the model to learn EEG data from each patient in dynamic subspaces with weak correlation layer by layer to minimize interference and promote knowledge transfer. Regularization Loss Reconstruction Algorithm and Matrix Dimensionality Reduction Algorithm are introduced into the core of MP. Experimental results show that MP exhibits excellent performance and low forgetting rates in sequential learning of seizure prediction. The forgetting rate of accuracy and sensitivity under multiple experiments are below 5%. When learning from multi-center datasets, the forgetting rates for accuracy and sensitivity decrease to 0.65% and 1.86%, making it comparable to state-of-the-art CL strategies. Through ablation experiments, we have analyzed that MP can operate with minimal storage and computational cost, which demonstrates practical potential for seizure prediction in clinical scenarios.


Assuntos
Eletroencefalografia , Aprendizado de Máquina , Convulsões , Humanos , Eletroencefalografia/métodos , Convulsões/fisiopatologia , Algoritmos , Processamento de Sinais Assistido por Computador , Epilepsia/fisiopatologia
3.
Ecotoxicol Environ Saf ; 272: 116109, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364762

RESUMO

Ambient air pollutants exposures may lead to aggravated Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). However, there is still a scarcity of empirical studies that have rigorously estimated this association, especially in regions where air pollution is severe. To fill in the literature gap, we conducted a cross-sectional study involving 2711,207 adults living in five regions of southern Xinjiang Uyghur Autonomous Region in 2021. Using a Space-Time Extra-Trees model, we assessed the four-year (2017-2020) average concentrations of particulate matter with aerodynamic diameter ≤1 µm (PM1), particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), particulate matter with aerodynamic diameter ≤10 µm (PM10), ozone (O3), sulfur dioxide (SO2), and carbon monoxide (CO), and then assigned these values to the participants. Generalized linear mixed models were employed to examine the relationships between air pollutants and the prevalence of MAFLD, with adjustment for multiple confounding factors. The odds ratios and 95% confidence intervals of MAFLD were 2.002 (1.826-2.195), 1.133 (1.108-1.157), 1.034 (1.027-1.040), 1.077 (1.023-1.134), 2.703 (2.322-3.146) and 1.033 (1.029-1.036) per 10 µg/m3 increase in the 4-year average PM1, PM2.5, PM10, O3, SO2 and CO exposures, respectively. The robustness of the findings was confirmed by a series of sensitivities. In summary, long-term exposure to ambient air pollutants was associated with increased odds of MAFLD, particularly in males and individuals with unhealthy lifestyles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Hepatopatias , Ozônio , Masculino , Adulto , Humanos , Estudos Transversais , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise , China/epidemiologia , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos
4.
Health Inf Sci Syst ; 11(1): 11, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36733469

RESUMO

Purpose: In order to meet restrictions and difficulties in the development of hospital medical informatization and clinical databases in China, in this study, a disease-specific clinical database system (DSCDS) was designed and built. It provides support for the full utilization of real world medical big data in clinical research and medical services for specific diseases. Methods: The development of DSCDS involved (1) requirements analysis on precision medicine, medical big data, and clinical research; (2) design schematics and basic architecture; (3) standard datasets of specific diseases consisting of common data elements (CDEs); (4) collection and aggregation of specific disease data scattered in various medical business systems of the hospital; (5) governance and quality improvement of specific disease data; (6) data storage and computing; and (7) design of data application modules. Results: A DSCDS for liver cirrhosis was created in the gastrointestinal department of a 3A grade hospital in China and had more than nine data application modules. Based on this DSCDS, a series of clinical studies are being carried out, such as retrospective or prospective cohorts, prognostic studies using multimodal data, and follow-up studies. Conclusion: The development of the DSCDS for liver cirrhosis in this paper provides experience and reference for the design and development of DSCDSs for other specific diseases in China; it can even expand to the development of DSCDSs in other countries if they have the demand for DSCDS and the same or better medical informatization foundation. DSCDS has more accurate, standard, comprehensive, multimodal and usable data of specific diseases than the general clinical database system and clinical data repository (CDR) and provides a credible data foundation for medical research, clinical decision-making and improving the medical service quality of specific diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-023-00211-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA