Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Int J Ophthalmol ; 17(5): 883-895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766339

RESUMO

AIM: To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy (DR) and provide a novel strategy to elucidate the pathological mechanism of DR. METHODS: The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy (PDR), 23 with non-proliferative retinopathy (NPDR), 27 without retinopathy (DM), and 29 from the sex-, age- and BMI- matched healthy controls (29 HC) were analyzed by 16S rDNA gene sequencing. Sixty fecal samples from PDR, DM, and HC groups were assayed by untargeted metabolomics. Fecal metabolites were measured using liquid chromatography-mass spectrometry (LC-MS) analysis. Associations between gut microbiota and fecal metabolites were analyzed. RESULTS: A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR, and the close correlation of the disease progression with PDR-related microbiome and metabolites were found. To be specific, the structure of gut microbiota differed in four groups. Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups, than those in DM and HC groups. A cluster of microbiome enriched in PDR group, including Pseudomonas, Ruminococcaceae-UCG-002, Ruminococcaceae-UCG-005, Christensenellaceae-R-7, was observed. Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group. Arginine, serine, ornithine, and arachidonic acid were significantly enriched in PDR group, while proline was enriched in HC group. Functional analysis illustrated that arginine biosynthesis, lysine degradation, histidine catabolism, central carbon catabolism in cancer, D-arginine and D-ornithine catabolism were elevated in PDR group. Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine, ornithine levels in fecal samples. CONCLUSION: This study elaborates the different microbiota structure in the gut from four groups. The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR. Amino acid and fatty acid catabolism is especially disordered in PDR group. This may help provide a novel diagnostic parameter for DR, especially PDR.

2.
Neural Regen Res ; 19(10): 2310-2320, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488565

RESUMO

JOURNAL/nrgr/04.03/01300535-202410000-00032/figure1/v/2024-02-06T055622Z/r/image-tiff Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epidemiology of these conditions has not been well characterized. In this study, we collected information on diabetic eye disease-related research grants from seven representative countries--the United States, China, Japan, the United Kingdom, Spain, Germany, and France--by searching for all global diabetic eye disease journal articles in the Web of Science and PubMed databases, all global registered clinical trials in the ClinicalTrials database, and new drugs approved by the United States, China, Japan, and EU agencies from 2012 to 2021. During this time period, diabetic retinopathy accounted for the vast majority (89.53%) of the 2288 government research grants that were funded to investigate diabetic eye disease, followed by diabetic macular edema (9.27%). The United States granted the most research funding for diabetic eye disease out of the seven countries assessed. The research objectives of grants focusing on diabetic retinopathy and diabetic macular edema differed by country. Additionally, the United States was dominant in terms of research output, publishing 17.53% of global papers about diabetic eye disease and receiving 22.58% of total citations. The United States and the United Kingdom led international collaborations in research into diabetic eye disease. Of the 415 clinical trials that we identified, diabetic macular edema was the major disease that was targeted for drug development (58.19%). Approximately half of the trials (49.13%) pertained to angiogenesis. However, few drugs were approved for ophthalmic (40 out of 1830; 2.19%) and diabetic eye disease (3 out of 1830; 0.02%) applications. Our findings show that basic and translational research related to diabetic eye disease in the past decade has not been highly active, and has yielded few new treatment methods and newly approved drugs.

3.
Neural Regen Res ; 19(10): 2290-2298, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488563

RESUMO

JOURNAL/nrgr/04.03/01300535-202410000-00030/figure1/v/2024-02-06T055622Z/r/image-tiff Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum (L. barbarum) polysaccharide (LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide (LbGP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of LbGP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of LbGP as a protective pre-treatment on days 1-7; intraperitoneal administration of 40 mg/kg N-methyl-N-nitrosourea to induce photoreceptor injury on day 7; and continuation of orally administered LbGP on days 8-14. Treatment with LbGP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. LbGP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, LbGP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.

4.
Acta Neuropathol Commun ; 12(1): 44, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504301

RESUMO

Microglia-mediated neuroinflammatory responses are recognized as a predominant factor during high intraocular pressure (IOP)-induced retinal and optic nerve injury along with potential therapeutic targets for the disease. Our previous research indicated that mesenchymal stem cell (MSC) treatment could reduce high IOP-induced neuroinflammatory responses through the TLR4 pathway in a rat model without apparent cell replacement and differentiation, suggesting that the anti-neuroinflammatory properties of MSCs are potentially mediated by paracrine signaling. This study aimed to evaluate the anti-neuroinflammatory effect of human adipose tissue-derived extracellular vesicles (ADSC-EVs) in microbead-induced ocular hypertension (OHT) animals and to explore the underlying mechanism since extracellular vesicles (EVs) are the primary transporters for cell secretory action. The anti-neuroinflammatory effect of ADSC-EVs on LPS-stimulated BV-2 cells in vitro and OHT-induced retinal and optic nerve injury in vivo was investigated. According to the in vitro research, ADSC-EV treatment reduced LPS-induced microglial activation and the TLR4/NF-κB proinflammatory cascade response axis in BV-2 cells, such as CD68, iNOS, TNF-α, IL-6, and IL-1ß, TLR4, p-38 MAPK, NF-κB. According to the in vivo data, intravitreal injection of ADSC-EVs promoted RGC survival and function, reduced microglial activation, microglial-derived neuroinflammatory responses, and TLR4/MAPK/NF-κB proinflammatory cascade response axis in the OHT mice. Our findings provide preliminary evidence for the RGC protective and microglia-associated neuroinflammatory reduction effects of ADSC-EVs by inhibiting the TLR4/MAPK/NF-κB proinflammatory cascade response in OHT mice, indicating the therapeutic potential ADSC-EVs or adjunctive therapy for glaucoma.


Assuntos
Glaucoma , Hipertensão Ocular , Traumatismos do Nervo Óptico , Humanos , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , Células Ganglionares da Retina/metabolismo , Lipopolissacarídeos/farmacologia , Hipertensão Ocular/metabolismo , Inflamação/metabolismo , Células-Tronco/metabolismo
5.
Stem Cell Res Ther ; 14(1): 340, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012786

RESUMO

Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Retinose Pigmentar , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Retina/patologia , Degeneração Retiniana/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/patologia , Organoides
6.
Stem Cell Res ; 73: 103263, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011758

RESUMO

X-linked retinoschisis (XLRS) is one of the most common retinal genetic diseases with progressive visual impairment in childhood affecting males. It is manifested with macular and/or peripheral schisis in neural retinas with no effective treatment. Previously, we successfully generated a human-induced pluripotent stem cell (iPSC) line from an XLRS patient carrying the hemizygous RS1 c. 304C > T (p.R102W) mutation. Here, we corrected the c.304C > T mutation in the RS1 gene using CRISPR/Cas9 technology to generate an isogenic control. This cell line is valuable for the study of XLRS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retinosquise , Masculino , Humanos , Retinosquise/genética , Retinosquise/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Retina/metabolismo , Linhagem Celular , Proteínas do Olho/genética , Proteínas do Olho/metabolismo
7.
Invest Ophthalmol Vis Sci ; 64(13): 3, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788001

RESUMO

Purpose: Diabetic retinopathy (DR) is a common complication of diabetes and has a high prevalence. Dysregulation of circadian rhythmicity is associated with the development of DR. This research aimed to investigate rhythmical transcriptome alterations in the retina of diabetic mice. Methods: C57BL/6J mice were used to establish a diabetes model by intraperitoneal injection of streptozotocin (STZ). After 12 weeks, retinas were collected continuously at 4-hour intervals over 1 day. Total RNA was extracted from normal and STZ-treated retinas and RNA sequencing was performed. Meta2d algorithm, Kyoto Encyclopedia of Genes, Phase Set Enrichment Analysis, and time-series cluster analysis were used to identify, analyze and annotate the composition, phase, and molecular functions of rhythmic transcripts in retinas. Results: The retina exhibited powerful transcriptome rhythmicity. STZ-induced diabetes markedly modified the transcriptome characteristics of the circadian transcriptome in the retina, including composition, phase, and amplitude. Moreover, the diabetic mice led to re-organized temporal and clustering enrichment pathways in space and time and affected core clock machinery. Conclusions: Diabetes impairs the circadian rhythm of the transcriptomic profile of retinas. This study offers new perspectives on the negative effects of diabetes on the retina, which may provide important information for the development of new treatments for DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Camundongos , Animais , Transcriptoma , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Ritmo Circadiano/genética
8.
J Transl Med ; 21(1): 451, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420234

RESUMO

BACKGROUND: Diabetic retinopathy (DR) development is associated with disturbances in the gut microbiota and related metabolites. Butyric acid is one of the short-chain fatty acids (SCFAs), which has been found to possess a potential antidiabetic effect. However, whether butyrate has a role in DR remains elusive. This study aimed to investigate the effect and mechanism of sodium butyrate supplementation on DR. METHODS: C57BL/6J mice were divided into three groups: Control group, diabetic group, and diabetic with butyrate supplementation group. Type 1 diabetic mouse model was induced by streptozotocin. Sodium butyrate was administered by gavage to the experimental group daily for 12 weeks. Optic coherence tomography, hematoxylin-eosin, and immunostaining of whole-mount retina were used to value the changes in retinal structure. Electroretinography was performed to assess the retinal visual function. The tight junction proteins in intestinal tissue were evaluated using immunohistochemistry. 16S rRNA sequencing and LC-MS/MS were performed to determine the alteration and correlation of the gut microbiota and systemic SCFAs. RESULTS: Butyrate decreased blood glucose, food, and water consumption. Meanwhile, it alleviated retinal thinning and activated microglial cells but improved electroretinography visual function. Additionally, butyrate effectively enhanced the expression of ZO-1 and Occludin proteins in the small intestine. Crucially, only butyric acid, 4-methylvaleric acid, and caproic acid were significantly decreased in the plasma of diabetic mice and improved after butyrate supplementation. The deeper correlation analysis revealed nine genera strongly positively or negatively correlated with the above three SCFAs. Of note, all three positively correlated genera, including norank_f_Muribaculaceae, Ileibacterium, and Dubosiella, were significantly decreased in the diabetic mice with or without butyrate treatment. Interestingly, among the six negatively correlated genera, Escherichia-Shigella and Enterococcus were increased, while Lactobacillus, Bifidobacterium, Lachnospiraceae_NK4A136_group, and unclassified_f_Lachnospiraceae were decreased after butyrate supplementation. CONCLUSION: Together, these findings demonstrate the microbiota regulating and diabetic therapeutic effects of butyrate, which can be used as a potential food supplement alternative to DR medicine.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Microbioma Gastrointestinal , Animais , Camundongos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , RNA Ribossômico 16S , Cromatografia Líquida , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico
9.
Chin Med Sci J ; 38(2): 77-93, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37263796

RESUMO

Background In mainland China, patients with neovascular age-related macular degeneration (nAMD) have approximately an 40% prevalence of polypoidal choroidal vasculopathy (PCV). This disease leads to recurrent retinal pigment epithelium detachment (PED), extensive subretinal or vitreous hemorrhages, and severe vision loss. China has introduced various treatment modalities in the past years and gained comprehensive experience in treating PCV.Methods A total of 14 retinal specialists nationwide with expertise in PCV were empaneled to prioritize six questions and address their corresponding outcomes, regarding opinions on inactive PCV, choices of anti-vascular endothelial growth factor (anti-VEGF) monotherapy, photodynamic therapy (PDT) monotherapy or combined therapy, patients with persistent subretinal fluid (SRF) or intraretinal fluid (IRF) after loading dose anti-VEGF, and patients with massive subretinal hemorrhage. An evidence synthesis team conducted systematic reviews, which informed the recommendations that address these questions. This guideline used the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach to assess the certainty of evidence and grade the strengths of recommendations. Results The panel proposed the following six conditional recommendations regarding treatment choices. (1) For patients with inactive PCV, we suggest observation over treatment. (2) For treatment-na?ve PCV patients, we suggest either anti-VEGF monotherapy or combined anti-VEGF and PDT rather than PDT monotherapy. (3) For patients with PCV who plan to initiate combined anti-VEGF and PDT treatment, we suggest later/rescue PDT over initiate PDT. (4) For PCV patients who plan to initiate anti-VEGF monotherapy, we suggest the treat and extend (T&E) regimen rather than the pro re nata (PRN) regimen following three monthly loading doses. (5) For patients with persistent SRF or IRF on optical coherence tomography (OCT) after three monthly anti-VEGF treatments, we suggest proceeding with anti-VEGF treatment rather than observation. (6) For PCV patients with massive subretinal hemorrhage (equal to or more than four optic disc areas) involving the central macula, we suggest surgery (vitrectomy in combination with tissue-plasminogen activator (tPA) intraocular injection and gas tamponade) rather than anti-VEGF monotherapy. Conclusions Six evidence-based recommendations support optimal care for PCV patients' management.


Assuntos
Inibidores da Angiogênese , Vasculopatia Polipoidal da Coroide , Humanos , Inibidores da Angiogênese/uso terapêutico , Terapia Combinada , Fator A de Crescimento do Endotélio Vascular , Hemorragia Retiniana/tratamento farmacológico , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos , Estudos Retrospectivos
10.
Methods Mol Biol ; 2678: 147-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37326710

RESUMO

The gut microbiome that inhabits human hosts plays an important role in the development of a healthy host immune system. Many studies have shown that gut microbiota is involved in the occurrence and development of diabetic retinopathy (DR). With the advent of sequencing technology of the bacterial 16S ribosomal RNA (rRNA) gene, microbiota studies are becoming more feasible. Here, we described a study protocol to characterize the microbiota composite in the DR and non-DR patients compared with healthy controls.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Microbiota/genética , RNA Ribossômico 16S/genética
11.
Methods Mol Biol ; 2678: 177-182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37326713

RESUMO

In vitro generation of a functional retinal pigment epithelium (RPE) monolayer sheet is useful and promising for RPE cell therapy. Here, we outline a method to construct engineered RPE sheets treated by induced pluripotent stem cell-conditioned medium (iPS-CM) in conjunction with femtosecond laser intrastromal lenticule (FLI-lenticule) scaffold to aid in enhanced RPE characteristics and cilium assembly. Such a strategy to construct RPE sheets is a promising avenue for developing RPE cell therapy, disease models, and drug screening tools.


Assuntos
Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Meios de Cultivo Condicionados , Células Cultivadas
12.
Methods Mol Biol ; 2678: 183-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37326714

RESUMO

Chromatin immunoprecipitation (ChIP) is one of the most widely used methods for investigating interactions between proteins and DNA sequences. ChIP plays an important role in the transcriptional regulation study, which can locate the target genes of transcription factors and cofactors or monitor the sequence-specific genomic regions of histone modification. To analyze the interaction between transcription factors and several candidate genes, ChIP coupled with quantitative PCR (ChIP-PCR) assay is a basic tool. With the development of next-generation sequencing technology, ChIP-coupled sequencing (ChIP-seq) can provide the protein-DNA interaction information in a genome-wide dimension, which helps a lot in identifying new target genes. This chapter describes a protocol for performing ChIP-seq of transcription factors from retinal tissues.


Assuntos
DNA , Fatores de Transcrição , Animais , Camundongos , DNA/genética , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina/métodos , Reação em Cadeia da Polimerase , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cromatina/genética
13.
Methods Mol Biol ; 2678: 199-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37326716

RESUMO

Diabetic retinopathy (DR) is the main complication of diabetes mellitus (DM). Recent studies have implicated microRNAs dysfunction in human retinal microvascular endothelial cell (HRMEC). In this study, we aim to investigate the apoptotic promotion of miR-29b-3p by blocking SIRT1 in HRMEC for DR situation. To identify the regulating relationship between miR-29b-3p and SIRT1, HRMECs were transfected with miR-29b-3p mimics/inhibitors or their negative controls. Cell viability was assessed with the cell counting kit-8 (CCK-8) assay, and apoptotic cells were stained by one-step TUNEL assay kit. Gene and protein expression were assayed by RT-qPCR and Western blotting separately. Dual-luciferase reporter assay using HEK293T cells was performed to show the direct interaction of miR-29b-3p and the 3'-UTR of SIRT1. HRMECs were identified as >95% positive for CD31 and vWF. Upregulated miR-29b-3p decreased the expression of SIRT1 and increased the ratio of Bax/Bcl-2, while downregulated miR-29b-3p increased the expression of SIRT1 protein and downregulated the ratio of Bax/Bcl-2. Dual-luciferase reporter assay showed the direct interaction of miR-29b-3p and SIRT1. The dysregulation of miR-29b-3p/SIRT1 is a potential mechanism of HRMEC apoptosis in DR. miR-29b-3p/SIRT1 may be a potential therapeutic target for DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células Endoteliais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Células HEK293 , Luciferases/metabolismo , Apoptose/genética , Proliferação de Células/genética , Diabetes Mellitus/metabolismo
14.
Mater Today Bio ; 19: 100579, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36880084

RESUMO

Tissue injury is a common clinical problem, which may cause great burden on patients' life. It is important to develop functional scaffolds to promote tissue repair and regeneration. Due to their unique composition and structure, microneedles have attracted extensive attention in various tissues regeneration, including skin wound, corneal injury, myocardial infarction, endometrial injury, and spinal cord injury et al. Microneedles with micro-needle structure can effectively penetrate the barriers of necrotic tissue or biofilm, therefore improving the bioavailability of drugs. The use of microneedles to deliver bioactive molecules, mesenchymal stem cells, and growth factors in situ allows for targeted tissue and better spatial distribution. At the same time, microneedles can also provide mechanical support or directional traction for tissue, thus accelerating tissue repair. This review summarized the research progress of microneedles for in situ tissue regeneration over the past decade. At the same time, the shortcomings of existing researches, future research direction and clinical application prospect were also discussed.

15.
Biofabrication ; 15(3)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963105

RESUMO

The three-dimensional (3D) retinal organoids (ROs) derived from human induced pluripotent stem cells (hiPSCs), mimicking the growth and development of the human retina, is a promising model for investigating inherited retinal diseasesin vitro. However, the efficient generation of homogenous ROs remains a challenge. Here we introduce a novel polydimethylsiloxane (PDMS) microwell platform containing 62 V-bottom micro-cavities for the ROs differentiation from hiPSCs. The uniform adherent 3D ROs could spontaneously form using neural retina (NR) induction. Our results showed that the complex of NR (expressing VSX2), ciliary margin (CM) (expressing RDH10), and retinal pigment epithelium (RPE) (expressing ZO-1, MITF, and RPE65) developed in the PDMS microwell after the differentiation. It is important to note that ROs in PDMS microwell platforms not only enable one-stop assembly but also maintain homogeneity and mature differentiation over a period of more than 25 weeks without the use of BMP4 and Matrigel. Retinal ganglion cells (expressing BRN3a), amacrine cells (expressing AP2a), horizontal cells (expressing PROX1 and AP2α), photoreceptor cells for cone (expressing S-opsin and L/M-opsin) and rod (expressing Rod opsin), bipolar cells (expressing VSX2 and PKCα), and Müller glial cells (expressing GS and Sox9) gradually emerged. Furthermore, we replaced fetal bovine serum with human platelet lysate and established a xeno-free culture workflow that facilitates clinical application. Thus, our PDMS microwell platform for one-stop assembly and long-term culture of ROs using a xeno-free workflow is favorable for retinal disease modeling, drug screening, and manufacturing ROs for clinical translation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Espécies Reativas de Oxigênio , Retina , Diferenciação Celular , Organoides , Opsinas , Dimetilpolisiloxanos , Impressão Tridimensional
16.
Build Simul ; 16(4): 589-602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789406

RESUMO

Fast and accurate identification of the pollutant source location and release rate is important for improving indoor air quality. From the perspective of public health, identification of the airborne pathogen source in public buildings is particularly important for ensuring people's safety and health. The existing adjoint probability method has difficulty in distinguishing the temporal source, and the optimization algorithm can only analyze a few potential sources in space. This study proposed an algorithm combining the adjoint-pulse and regularization methods to identify the spatiotemporal information of the point pollutant source in an entire room space. We first obtained a series of source-receptor response matrices using the adjoint-pulse method in the room based on the validated CFD model, and then used the regularization method and composite Bayesian inference to identify the release rate and location of the dynamic pollutant source. The results showed that the MAPEs (mean absolute percentage errors) of estimated source intensities were almost less than 15%, and the source localization success rates were above 25/30 in this study. This method has the potential to be used to identify the airborne pathogen source in public buildings combined with sensors for disease-specific biomarkers.

17.
Curr Eye Res ; 48(3): 238-250, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36149345

RESUMO

PURPOSE: Corneal myofibroblasts play a crucial role in the process of corneal scarring. Potassium has been documented to reduce skin scar tissue formation. Herein, we investigated the ability of potassium to prevent corneal fibrosis in cell culture and in vivo. METHODS: Corneal fibroblasts (CFs) were isolated from the corneal limbus and treated with TGF-ß1 to transform into corneal myofibroblasts. Corneal myofibroblast markers were detected by quantitative real-time PCR, Western blot, and immunofluorescence. The contractive functions of corneal myofibroblast were evaluated by the scratch assay and the collagen gel contraction assay. RNA sequencing in corneal fibroblasts was performed to explore the mechanisms underlying hyperosmolar potassium treatment. GO and KEGG analysis were performed to explore the underlying mechanism by hyperosmolar potassium treatment. The ATP detection assay assessed the level of cell metabolism. KCl eye drops four times per day were administered to mice models of corneal injury to evaluate the ability to prevent corneal scar formation. Corneal opacity area was evaluated by Image J software. RESULTS: Treatment with hyperosmolar potassium could suppress corneal myofibroblast transformation and collagen I synthesis induced by TGF-ß1 in cell culture. Hyperosmolar potassium could inhibit wound healing and gel contraction in CFs. RNA sequencing results suggested that genes involved in the metabolic pathway were downregulated after KCl treatment. ATP levels were significantly decreased in the KCl group compared with the control group. Hyperosmolar potassium could prevent corneal myofibroblast transformation after corneal injury and corneal scar formation in mice. CONCLUSION: Potassium can suppress corneal myofibroblast transformation and collagen I protein synthesis. Moreover, given that KCl eye drops can prevent corneal scar formation, it has been suggested to have huge prospects as a novel treatment approach during clinical practice.


Assuntos
Lesões da Córnea , Animais , Camundongos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Células Cultivadas , Fibroblastos/metabolismo , Colágeno/metabolismo , Lesões da Córnea/metabolismo , Soluções Oftálmicas , Trifosfato de Adenosina/metabolismo , Diferenciação Celular , Actinas/metabolismo
18.
Front Bioeng Biotechnol ; 10: 939774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185441

RESUMO

Retinitis pigmentosa (RP) is a leading cause of vision impairment and blindness worldwide, with limited medical treatment options. USH2A mutations are one of the most common causes of non-syndromic RP. In this study, we developed retinal organoids (ROs) and retinal pigment epithelium (RPE) cells from induced pluripotent stem cells (iPSCs) of RP patient to establish a sustainable in vitro RP disease model. RT-qPCR, western blot, and immunofluorescent staining assessments showed that USH2A mutations induced apoptosis of iPSCs and ROs, and deficiency of the extracellular matrix (ECM) components. Transcriptomics and proteomics findings suggested that abnormal ECM-receptor interactions could result in apoptosis of ROs with USH2A mutations via the PI3K-Akt pathway. To optimize the culture conditions of ROs, we fabricated a microfluidic chip to co-culture the ROs with RPE cells. Our results showed that this perfusion system could efficiently improve the survival rate of ROs. Further, ECM components such as laminin and collagen IV of ROs in the RP group were upregulated compared with those maintained in static culture. These findings illustrate the potential of microfluidic chip combined with ROs technology in disease modelling for RP.

19.
Stem Cell Res ; 64: 102911, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36103774

RESUMO

Retinitis pigmentosa (RP) is one of the most common inherited retinal diseases characterized by nyctalopia, progressive vision loss and visual field contraction. we previously generated an induced pluripotent stem cell line (CSUASOi004-A) from a RP patient with heterozygous PRPF6 c.2699 G>A (p.R900H) mutation. Here we corrected the PRPF6 c.2699 G>A mutation genetically using CRISPR/Cas9 technology to generate an isogenic control (CSUASOi004-A-1), which can provide a valuable resource in the research of the disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retinose Pigmentar , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Heterozigoto , Mutação/genética , Retina/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Transcrição/genética
20.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012314

RESUMO

Pre-mRNA processing factors (PRPFs) are vital components of the spliceosome and are involved in the physiological process necessary for pre-mRNA splicing to mature mRNA. As an important member, PRPF6 mutation resulting in autosomal dominant retinitis pigmentosa (adRP) is not common. Recently, we reported the establishment of an induced pluripotent stem cells (iPSCs; CSUASOi004-A) model by reprogramming the peripheral blood mononuclear cells of a PRPF6-related adRP patient, which could recapitulate a consistent disease-specific genotype. In this study, a disease model of retinal pigment epithelial (RPE) cells was generated from the iPSCs of this patient to further investigate the underlying molecular and pathological mechanisms. The results showed the irregular morphology, disorganized apical microvilli and reduced expressions of RPE-specific genes in the patient's iPSC-derived RPE cells. In addition, RPE cells carrying the PRPF6 mutation displayed a decrease in the phagocytosis of fluorescein isothiocyanate-labeled photoreceptor outer segments and exhibited impaired cell polarity and barrier function. This study will benefit the understanding of PRPF6-related RPE cells and future cell therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retinose Pigmentar , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Mutação , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Retinose Pigmentar/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA