Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 129: 106161, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162287

RESUMO

Dual-modal magnetic resonance/fluorescent imaging (MRI/FI) attracts moreandmoreattentions in diagnosis of tumors. A corresponding dual-modal imaging agent with sufficient tumor sensitivity and specificity should be matched to improve imaging quality. Tripeptide (RGD) and pentapeptide (YIGSR) were selected as the tumor-targeting groups and attached to gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and rhodamine B (RhB), and then make two novel polypeptide-based derivatives (RGD-Gd-DTPA-RhB and YIGSR-Gd-DTPA-RhB), respectively. These derivatives were further characterized and their properties, such as cell uptake, cell cytotoxicity, MRI and FI assay, were measured. YIGSR-Gd-DTPA-RhB and RGD-Gd-DTPA-RhB had high relaxivity, good tumor-targeting property, low cell cytotoxicity and good red FI in B16F10 melanoma cells. Moreover, YIGSR-Gd-DTPA-RhB and RGD-Gd-DTPA-RhB possessed high uptake to B16F10 melanoma, and then achieve highly enhanced FI and MRI of tumors in mice for a prolonged time. Therefore, YIGSR-Gd-DTPA-RhB and RGD-Gd-DTPA-RhB can be applied as the potential agents for tumor targeted MRI/FI in vivo.


Assuntos
Meios de Contraste , Melanoma , Camundongos , Animais , Meios de Contraste/química , Gadolínio DTPA/farmacologia , Gadolínio DTPA/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Oligopeptídeos/farmacologia , Imagem Óptica/métodos , Espectroscopia de Ressonância Magnética
2.
Cell Commun Signal ; 18(1): 70, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366266

RESUMO

The hydroxylase cytochrome P450 1A1 (CYP1A1) is regulated by the inflammation-limiting aryl hydrocarbon receptor (AhR), but CYP1A1 immune functions remain unclear. We observed CYP1A1 overexpression in peritoneal macrophages (PMs) isolated from mice following LPS or heat-killed Escherichia. coli (E. coli) challenge. CYP1A1 overexpression augmented TNF-α and IL-6 production in RAW264.7 cells (RAW) by enhancing JNK/AP-1 signalling. CYP1A1 overexpression also promoted 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HETE) production in activated RAW, while a 12(S)-HETE antibody attenuated and 12(S)-HETE alone induced inflammatory responses. Macrophages harbouring hydroxylase-deficient CYP1A1 demonstrated reduced 12(S)-HETE generation and LPS-induced TNF-α/IL-6 secretion. CYP1A1 overexpression also impaired phagocytosis of bacteria via decreasing the expression of scavenger receptor A (SR-A) in PMs. Mice injected with CYP1A1-overexpressing PMs were more susceptible to CLP- or E. coli-induced mortality and bacteria invading, while Rhapontigenin, a selective CYP1A1 inhibitor, improved survival and bacteria clearance of mice in sepsis. CYP1A1 and 12(S)-HETE were also elevated in monocytes and plasma of septic patients and positively correlated with SOFA scores. Macrophage CYP1A1 disruption could be a promising strategy for treating sepsis. Video abstract.


Assuntos
Citocromo P-450 CYP1A1/fisiologia , MAP Quinase Quinase 4/metabolismo , Macrófagos Peritoneais , Fagocitose , Sepse/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Adulto , Idoso , Animais , Escherichia coli , Humanos , Inflamação , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células RAW 264.7 , Adulto Jovem
3.
Cell Commun Signal ; 18(1): 74, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32423412

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

5.
Cytokine ; 128: 155001, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035329

RESUMO

Neutrophilic granule protein (NGP) belongs to the cystatin superfamily. Even though this superfamily is critically involved in cancer biology and adaptive immunity, the relationship of macrophage NGP to inflammation and phagocytosis remains poorly understood. In this study, we observed a significant increase of NGP in peritoneal macrophages (PMs) isolated from mice challenged with E. coli or lipopolysaccharide (LPS), as judged by NGP mRNA microarray. We also found changes in NGP to be mainly Toll-like receptor 4 (TLR4)-dependent. By western blot and electrophoretic mobility shift assay, we demonstrated NGP overexpression to reduce TNF-α and IL-1ß production by LPS-induced RAW264.7 cells (RAW) via suppression of the NF-κB (p65 and p50) signalling pathway, rather than the JNK1/AP-1 (fos and jun) signalling pathway. NGP overexpression by LPS-induced RAW also induced IL-10, an anti-inflammatory cytokine, which was partially involved in the anti-inflammatory effect produced by NGP overexpression. Moreover, upregulated NGP enhanced the phagocytosis of E. coli by RAW. Taken together, these results demonstrated NGP to be an important host defense component that regulates inflammatory responses and phagocytosis by activated macrophages. As such, NGP may be useful for the treatment of inflammatory based disease.


Assuntos
Mediadores da Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Fagocitose/fisiologia , Animais , Linhagem Celular , Cistatinas/metabolismo , Citocinas/metabolismo , Escherichia coli/metabolismo , Inflamação/patologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Cell Immunol ; 349: 104047, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32019673

RESUMO

The polarization of macrophages is critical to inflammation and tissue repair, with unbalanced macrophage polarization associated with critical dysfunctions of the immune system. Cytochrome P450 1A1 (CYP1A1) is a hydroxylase mainly controlled by the inflammation-limiting aryl hydrocarbon receptor (AhR), which plays a critical role in mycoplasma infection, oxidative stress injury, and cancer. Arginase-1 (Arg-1) is a surrogate for polarized alternative macrophages and is important to the production of nitric oxide (NO) by the modulation of arginine. In the present study, we found CYP1A1 to be upregulated in IL-4-stimulated mouse peritoneal macrophages (PMs) and human peripheral blood monocytes. Using CYP1A1-overexpressing RAW264.7 cells (CYP1A1/RAW) we found that CYP1A1 augmented Arg-1 expression by strengthening the activation of the JAK1/STAT6 signaling pathway in macrophages treated with IL-4. 15(S)-HETE, a metabolite of CYP1A1 hydroxylase, was elevated in IL-4-induced CYP1A1/RAW cells. Further, in macrophages, the loss-of-CYP1A1-hydroxylase activity was associated with reduced IL-4-induced Arg-1 expression due to impaired 15(S)-HETE generation. Of importance, CYP1A1 overexpressing macrophages reduced the inflammation associated with LPS-induced peritonitis. Taken together, these findings identified a novel signaling axis, CYP1A1-15(S)-HETE-JAK1-STAT6, that may be a promising target for the proper maintenance of macrophage polarization and may also be a means by which to treat immune-related disease due to macrophage dysfunction.


Assuntos
Arginase/biossíntese , Citocromo P-450 CYP1A1/fisiologia , Janus Quinase 1/antagonistas & inibidores , Macrófagos Peritoneais/efeitos dos fármacos , Peritonite/prevenção & controle , Fator de Transcrição STAT6/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Transferência Adotiva , Animais , Araquidonato 15-Lipoxigenase/fisiologia , Arginase/genética , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Endotoxinas/toxicidade , Humanos , Ácidos Hidroxieicosatetraenoicos/biossíntese , Ácidos Hidroxieicosatetraenoicos/genética , Ácidos Hidroxieicosatetraenoicos/farmacologia , Interleucina-4/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/transplante , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Células RAW 264.7 , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Células THP-1 , Regulação para Cima/efeitos dos fármacos
7.
Inflammation ; 43(1): 231-240, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31802382

RESUMO

Ellipticine, a natural product from Ochrosia elliptica, has been broadly investigated for its anticancer effects. Although inflammation has been clearly identified as a key factor in the onset and progression of cancer, the relationship between ellipticine and inflammation remains unknown. Hence, the aims of the present study were to assess the effects of ellipticine on the inflammatory responses to lipopolysaccharide (LPS)-induced macrophages and to potentially identify the underlying mechanisms involved. Viability testing showed that ellipticine was not significantly toxic to Raw264.7 cells and actually conveyed protective effects to LPS-stimulated Raw264.7 cells and human peripheral blood monocytes by decreasing the secretion of inflammatory factors (TNF-α and IL-6). The results of western blot analysis and electrophoretic mobility shift assays showed that ellipticine markedly suppressed LPS-induced activation of the JNK/AP-1 (c-Fos and c-Jun) signaling pathway, but not ERK/p38/NF-κB pathway (p65 and p50) activation. Furthermore, ellipticine reduced the inflammatory response and mortality in a mouse model of LPS-induced endotoxic shock. Collectively, these data indicate that ellipticine may be a potential therapeutic agent for the treatment of inflammation-associated diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Elipticinas/farmacologia , Inflamação/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Choque Séptico/prevenção & controle , Fator de Transcrição AP-1/metabolismo , Adulto , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/imunologia , Interleucina-6/metabolismo , Lipopolissacarídeos , Macrófagos/enzimologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Choque Séptico/induzido quimicamente , Choque Séptico/enzimologia , Choque Séptico/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
8.
Inflammation ; 40(3): 1012-1027, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28337636

RESUMO

Evodiamine (EVO), an important alkaloidal component extracted from the fruit of Evodiae fructus, has been known to possess anti-tumor, anti-inflammatory, anti-oxidative, and other therapeutic capabilities. In the present study, the effects of EVO on zymosan-induced inflammation and its underlying mechanism were investigated both in vitro and in vivo. Our results showed that EVO effectively suppressed both protein and mRNA expression of interleukin-1ß, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in vitro. Zymosan-induced DNA-binding activity of nuclear factor-kappa B (NF-κB) was attenuated by EVO, which was achieved through inhibitory effects on the phosphorylation of inhibitory κB α and p65 nuclear translocation, but there was very little association with mitogen-activated protein kinase activation. In vivo, treatment with EVO markedly decreased TNF-α and IL-6 levels in plasma. EVO also repressed inflammatory cytokine expression and ameliorated the abnormal state in both lung and intestine tissues by inactivation of NF-κB. Furthermore, EVO significantly reduced the mortality caused by zymosan. In summary, these results suggested that EVO could effectively suppress inflammatory responses in vitro and in vivo, and may be a potential therapeutic agent against inflammatory disorders.


Assuntos
Inflamação/prevenção & controle , Inibidor de NF-kappaB alfa/metabolismo , Quinazolinas/farmacologia , Citocinas/sangue , Citocinas/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Mucosa Intestinal/metabolismo , Pulmão/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Zimosan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA