Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt B): 130365, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444077

RESUMO

Mercury (Hg) significantly inhibits maize (Zea mays L.) production, which could be aggravated by water deficit (WD) due to climate change. However, there is no report on the maize in response to combined their stresses. This work was conducted for assessing the response and adaptive mechanism of maize to combined Hg and WD stress using two maize cultivars, Xianyu (XY) 335 and Yudan (YD) 132. The analysis was based on plant growth, physiological function, and transcriptomic data. Compared with the single Hg stress, Hg accumulation in whole plant and translocation factor (TF) under Hg+WD were increased by 64.51 % (1.44 mg kg-1) and 260.00 %, respectively, for XY 335; and 50.32 % (0.62 mg kg-1) and 220.02 %, respectively, for YD 132. Combined Hg and WD stress further increased the reactive oxygen species accumulation, aggravated the damage of the thylakoid membrane, and decreased chlorophyll content compared with single stress. For example, Chl a and Chl b contents of XY 335 were significantly decreased by 48.67 % and 28.08 %, respectively at 48 h after Hg+WD treatment compared with Hg stress. Furthermore, transcriptome analysis revealed that most of down-regulated genes were enriched in photosynthetic-antenna proteins, photosynthesis, chlorophyll and porphyrin metabolism pathways (PsbS1, PSBQ1 and FDX1 etc.) under combined stress, reducing light energy capture and electron transport. However, most genes related to the brassinosteroids (BRs) signaling pathway were up-regulated under Hg+WD stress. Correspondingly, exogenous BRs significantly enhanced the maize tolerance to stress by decreasing Hg accumulation and TF, and raising activities of antioxidant enzyme, the content of chlorophyll and photosynthetic performance. The PI, Fv/Fm and Fv/Fo of Hg+WD+BR treatment were increased by 29.88 %, 32.06 %, and 14.56 %, respectively, for XY 335 compared to Hg+WD. Overall, combined Hg and WD stress decreased photosynthetic efficiency by adversely affecting light absorption and electron transport, especially in stress-sensitive variety, but BRs could alleviate the inhibition of photosynthesis, providing a novel strategy for enhancing crop Hg and WD tolerance and food safety.


Assuntos
Mercúrio , Zea mays , Zea mays/genética , Brassinosteroides/farmacologia , Água , Mercúrio/toxicidade , Fotossíntese , Clorofila
2.
Life (Basel) ; 12(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36431056

RESUMO

Waterlogging is a major threat to maize production worldwide. The exogenous application of spermidine is well known to enhance plant tolerance to abiotic stresses. The role of exogenous spermidine application in waterlogging tolerance in maize was investigated in this study. Two maize varieties (a waterlogging-tolerant variety: Xundan 20 (XD20) and a waterlogging-sensitive variety: Denghai 662 (DH662)) were subjected to waterlogging stress at the seedling stage, and then foliar spraying of 0.75 mM spermidine or purified water. Findings demonstrated lower chlorophyll content, reduced growth indices, considerable increase in superoxide anion (O2-) generation rate, and H2O2/malondialdehyde accumulation in the two maize varieties under waterlogging stress compared to the control treatment. However, the tolerance variety performed better than the sensitive one. Foliar application of spermidine significantly increased antioxidant enzyme activities under waterlogging stress. In addition, the application of spermidine increased polyamine levels and led to the reduction of ethylene levels under waterlogging. Consequences of spermidine application were most apparent for the waterlogging-sensitive cultivar DH662 under waterlogging than the waterlogging-tolerant variety XD20.

3.
Ecotoxicol Environ Saf ; 246: 114191, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36265405

RESUMO

Maize pollen is highly sensitive to heat and drought, but few studies have investigated the combined effects of heat and drought on pollen viability. In this study, pollen's structural and physiological characteristics were determined after heat, drought, and combined stressors. Furthermore, integrated metabolomic and transcriptomic analyses of maize pollen were conducted to identify potential mechanisms of stress responses. Tassel growth and spikelet development were considerably suppressed, pollen viability was negatively impacted, and pollen starch granules were depleted during anthesis under stress. The inhibitory effects were more significant due to combined stresses than to heat or drought individually. The metabolic analysis identified 71 important metabolites in the combined stress compared to the other treatments, including sugars and their derivatives related to pollen viability. Transcriptomics also revealed that carbohydrate metabolism was significantly altered under stress. Moreover, a comprehensive metabolome-transcriptome analysis identified a central mechanism in the biosynthesis of UDP-glucose involved in reducing the activity of sucrose synthase SH-1 (shrunken 1) and sus1 (sucrose synthase 1) that suppressed sucrose transfer to UDP-glucose, leading to pollen viability exhaustion under stress. In conclusion, the lower pollen viability after heat and drought stress was associated with poor sucrose synthase activity due to the stress treatments.


Assuntos
Secas , Zea mays , Zea mays/metabolismo , Temperatura Alta , Transcriptoma , Estresse Fisiológico , Pólen/genética , Perfilação da Expressão Gênica , Glucose/metabolismo , Difosfato de Uridina/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Environ Pollut ; 307: 119488, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597486

RESUMO

Nitric oxide (NO) is an important phytohormone for plant adaptation to mercury (Hg) stress. The effect of Hg on lignin synthesis, NO production in leaf, sheath and root and their relationship were investigated in two members of the grass family - wheat and maize. Hg stress decreased growth and lignin contents, significantly affected phenylpropanoid and monolignol pathways (PAL, phenylalanine ammonia-lyase; 4-coumarate: CoA ligase, 4CL; cinnamyl alcohol dehydrogenase, CAD), with maize identified to be more sensitive to Hg stress than wheat. Among the tissue types, sheath encountered severe damage compared to leaves and roots. Hg translocation in maize was about twice that in wheat. Interestingly, total NO produced under Hg stress was significantly decreased compared to control, with maximum reduction of 43.4% and 42.9% in wheat and maize sheath, respectively. Regression analysis between lignin and NO contents or the activities of three enzymes including CAD, 4CL and PAL displayed the importance of NO contents, CAD, 4CL and PAL for lignin synthesis. Further, the gene expression profiles encoding CAD, 4CL and PAL provided support for the damaging effect of Hg on wheat sheath, and maize shoot. To validate NO potential to mitigate Hg toxicity in maize and wheat, NO donor and NO synthase inhibitor were supplemented along with Hg. The resulting phenotype, histochemical analysis and lignin contents showed that NO mitigated Hg toxicity by improving growth and lignin synthesis and accumulation. In summary, Hg sensitivity was higher in maize seedlings compared to wheat, which was associated with the lower lignin contents and reduced NO contents. External supplementation of NO is proposed as a sustainable approach to mitigate Hg toxicity in maize and wheat.


Assuntos
Mercúrio , Triticum , Lignina/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade , Óxido Nítrico/metabolismo , Triticum/metabolismo , Zea mays/metabolismo
5.
Plant Physiol Biochem ; 155: 756-768, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32882617

RESUMO

Drought is a key threat to maize growth and yield. Understanding the mechanism of immature tassel (IT) response to long term drought is of paramount importance. Here, the maize inbred line PH6WC was tested under well-watered (CK) and two water deficit treatments (WD1 and WD2). The final IT length in the WD1 and WD2 treatments decreased by nearly 6.2% and 21.2% compared to the CK, respectively, and the average accumulation rate IT dry matter was 1.5-fold and 1.8-fold slower, respectively. Furthermore, RNA sequencing analysis was conducted on the IT sampled at 30 days after the WD treatments. In total, the cellular component in gene ontology (GO) analysis suggested that the differentially expressed genes were significantly enriched in three common terms (apoplast, plant-type cell wall, and anchored component of membrane) among the CK vs WD1, CK vs WD2, and WD1 vs WD2 comparisons. Next, a co-expression network analysis identified 44 modules that contained global expression genes. Finally, by combining the GO analysis with modules, nine genes involved in carbohydrate metabolism and the antioxidant system were screened out, and the six corresponding physiological parameters were all significantly increased under the WD treatments. These results showed that, although the IT length and dry matter decreased, the IT enhanced the adaptation to drought by regulating their own genetic and physiological changes.


Assuntos
Secas , Inflorescência/crescimento & desenvolvimento , Estresse Fisiológico , Transcriptoma , Zea mays/fisiologia , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Solo , Água , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA