Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 948: 174929, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038678

RESUMO

Dormancy in seeds is a key persistence mechanism for many flowering plants. Physically dormant (PY) seeds have water impermeable seed coats, and in fire-prone systems a common mechanism for dormancy release is fire-induced soil heating. However, the thermal thresholds innate to seeds with PY may be influenced by vegetation, climate, and fire regimes, varying substantially between populations of the same species. To investigate intraspecific variation of thermal thresholds in PY seeds, we sampled obligate seeding Acacia pulchella (Fabaceae) which produces PY seeds. Sampling was undertaken from 13 populations across a climate gradient of rainfall and temperature, and between two vegetation communities in fire-prone Mediterranean-type ecosystems of south-west Western Australia. To test a range of weather and fire-induced soil heating dormancy-break scenarios, we conducted dry heat shock experiments between 40 and 140 °C for 10 min and scored germination for 16 weeks. We created population-specific thermal performance curves and extracted the dormancy release temperature at which 50 % of the seeds had germinated (DRT50), the optimum dormancy-breaking temperature to stimulate maximum germination (T0), and the lethal temperature at which 50 % of the seeds were killed (LT50). Generalised linear models were used to examine relationships between thermal thresholds and possible vegetation, climate, and fire regime drivers of intraspecific variation in seed traits. We found that thermal thresholds differed between vegetation communities, with thresholds consistently higher in forest-type ecosystems compared to open woodland, and the influence of climate varied significantly between the two communities. Seeds from Jarrah Forest populations had a DRT50 16.0 °C higher, a T0 9.7 °C higher, and LT50 7.8 °C higher than seeds from Banksia woodlands. A high rate of non-dormancy was identified in one population that had lost fire in its system and displayed significant germination after both summer and fire-related temperatures. The PY thermal thresholds modelled here provide insight into the strong influence of variable soil heating as a function of vegetation and fuel dynamics in fire-prone environments. Our findings highlight the significant intraspecific variation for this species and suggest that fire-induced soil heating generated by vegetation characteristics may be an overlooked element of fire regimes shaping seed traits.


Assuntos
Acacia , Sementes , Acacia/fisiologia , Germinação/fisiologia , Dormência de Plantas , Temperatura Alta , Clima , Austrália Ocidental , Ecossistema
2.
Conserv Physiol ; 11(1): coad093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076339

RESUMO

Many ecosystems are well adapted to fire, although the impacts of fire seasonality and its effect on post-fire recruitment are less well understood. Late summer or autumn fires within eucalypt forests with a Mediterranean-type climate allow for seedling emergence during the cooler and wetter seasons. The emergence and survival after spring fires may be impacted by higher soil temperatures and water stress, delaying recruitment until the subsequent winter period. During this delay, seeds may be exposed to predation and decay, which reduce the viable seed bank. This study examines post-fire recruitment dynamics in a eucalypt forest ecosystem (Northern Jarrah Forest (NJF) of southwestern Western Australia) and whether it may be vulnerable to human-induced changes to fire season. Here, we compare in situ post-fire seedling emergence patterns between autumn and spring burns and account for a potential ecological mechanism driving seasonal differences in emergence by determining the thermal germination requirements of seeds for 15 common species from the NJF. Our results demonstrate that 93% of species had thermal optima between 10°C and 20°C, analogous with soil temperatures measured during the germination window (late April to October). Concurrent in situ post-fire emergence was highest 144 days after an autumn (seasonal) fire, followed by a 10-72% decline. In contrast, there was no emergence within the first 200 days following a spring (aseasonal) fire. We conclude that aseasonal fire in the NJF can lead to a complete delay in recruitment in the first season post-fire, resulting in a lower inter-fire growth period and increasing the potential for further reductions in recruitment through seed predation and decay. The study suggests that aseasonal fire has an immediate and significant impact on initial recruitment in the NJF, but further research is required to determine any longer-term effects of this delay and its implications for fire management in southwestern Western Australia.

3.
Front Plant Sci ; 12: 795003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069650

RESUMO

Changes in fire regimes due to climate change and fire management practices are affecting the timing, length, and distribution of vegetation fires throughout the year. Plant species responses and tolerances to fire differ from season to season and are influenced by species-specific phenological processes. The ability of seeds to tolerate extreme temperatures associated with fire is one of these processes, with survival linked to seed moisture content at the time of exposure. As fire is more often occurring outside historic dry fire seasons, the probability of fire occurring when seeds are hydrated may also be increasing. In this study, we set out to understand the seasonal dynamics of seed hydration for seeds of Banksia woodland species, and how certain seed traits interact with environmental conditions to influence survival of high temperatures associated with fire. We measured the moisture content of seeds buried to 2 cm in the soil seed bank for four common native species and one invasive species on a weekly basis throughout 2017, along with soil moisture content and environmental correlates. We determined water sorption isotherms at 20°C for seeds of each species and used these functions to model weekly variation in seed water activity and predict when seeds are most sensitive to soil heating. Using Generalised additive models (GAMs), we were able to describe approximately 67% of the weekly variance in seed water activity and explored differences in seed hydration dynamics between species. Seed water activity was sufficiently high (i.e., ≥ 0.85 a w) so as to have created an increased risk of mortality if a fire had occurred during an almost continuous period between May and November in the study period (i.e., 2017). There were brief windows when seeds may have been in a dry state during early winter and late spring, and also when they may have been in a wet state during summer and late autumn. These data, and the associated analyses, provide an opportunity to develop approaches to minimize seed mortality during fire and maximize the seed bank response.

7.
Trends Ecol Evol ; 34(12): 1104-1117, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31399287

RESUMO

Altered fire regimes resulting from climate change and human activity threaten many terrestrial ecosystems. However, we lack a holistic and detailed understanding of the effects of altering one key fire regime component - season of fire. Altered fire seasonality can strongly affect post-fire recovery of plant populations through interactions with plant phenology. We identify seven key mechanisms of fire seasonality effects under a conceptual demographic framework and review evidence for these. We reveal negative impacts of altered fire seasonality and identify research gaps for mechanisms and climate types for future analyses of fire seasonality effects within the identified demographic framework. This framework and these mechanisms can inform critical decisions for conservation, land management, and fire management policy development globally.


Assuntos
Ecossistema , Incêndios , Mudança Climática , Atividades Humanas , Humanos , Plantas
8.
New Phytol ; 221(4): 1764-1775, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30269352

RESUMO

Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology.


Assuntos
Germinação/fisiologia , Dispersão de Sementes/fisiologia , Sementes/fisiologia , Biodiversidade , Conservação dos Recursos Naturais , Bases de Dados Factuais , Ecossistema , Plântula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA