Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 133, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479998

RESUMO

BACKGROUND: The global market of plant-based milk alternatives is continually growing. Flavour and taste have a key impact on consumers' selection of plant-based beverages. Unfortunately, natural plant milks have only limited acceptance. Their typically bean-like and grassy notes are perceived as "off-flavours" by consumers, while preferred fruity, buttery, and cheesy notes are missing. In this regard, fermentation of plant milk by lactic acid bacteria (LAB) appears to be an appealing option to improve aroma and taste. RESULTS: In this work, we systematically studied LAB fermentation of plant milk. For this purpose, we evaluated 15 food-approved LAB strains to ferment 4 different plant milks: oat milk (representing cereal-based milk), sunflower seed milk (representing seed-based milk), and pea and faba milk (representing legume-based milk). Using GC‒MS analysis, flavour changes during anaerobic fermentations were studied in detail. These revealed species-related and plant milk-related differences and highlighted several well-performing strains delivered a range of beneficial flavour changes. A developed data model estimated the impact of individual flavour compounds using sensory scores and predicted the overall flavour note of fermented and nonfermented samples. Selected sensory perception tests validated the model and allowed us to bridge compositional changes in the flavour profile with consumer response. CONCLUSION: Specific strain-milk combinations provided quite different flavour notes. This opens further developments towards plant-based products with improved flavour, including cheesy and buttery notes, as well as other innovative products in the future. S. thermophilus emerged as a well-performing strain that delivered preferred buttery notes in all tested plant milks. The GC‒MS-based data model was found to be helpful in predicting sensory perception, and its further refinement and application promise enhanced potential to upgrade fermentation approaches to flavour-by-design strategies.


Assuntos
Helianthus , Paladar , Avena , Pisum sativum , Odorantes , Aromatizantes , Sementes , Percepção
2.
Microb Cell Fact ; 21(1): 48, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346203

RESUMO

BACKGROUND: Sunflower seeds (Helianthus annuus) display an attractive source for the rapidly increasing market of plant-based human nutrition. Of particular interest are press cakes of the seeds, cheap residuals from sunflower oil manufacturing that offer attractive sustainability and economic benefits. Admittedly, sunflower seed milk, derived therefrom, suffers from limited nutritional value, undesired flavor, and the presence of indigestible sugars. Of specific relevance is the absence of vitamin B12. This vitamin is required for development and function of the central nervous system, healthy red blood cell formation, and DNA synthesis, and displays the most important micronutrient for vegans to be aware of. Here we evaluated the power of microbes to enrich sunflower seed milk nutritionally as well as in flavor. RESULTS: Propionibacterium freudenreichii NCC 1177 showed highest vitamin B12 production in sunflower seed milk out of a range of food-grade propionibacteria. Its growth and B12 production capacity, however, were limited by a lack of accessible carbon sources and stimulants of B12 biosynthesis in the plant milk. This was overcome by co-cultivation with Bacillus amyloliquefaciens NCC 156, which supplied lactate, amino acids, and vitamin B7 for growth of NCC 1177 plus vitamins B2 and B3, potentially supporting vitamin B12 production by the Propionibacterium. After several rounds of optimization, co-fermentation of ultra-high-temperature pre-treated sunflower seed milk by the two microbes, enabled the production of 17 µg (100 g)-1 vitamin B12 within four days without any further supplementation. The fermented milk further revealed significantly enriched levels of L-lysine, the most limiting essential amino acid, vitamin B3, vitamin B6, improved protein quality and flavor, and largely eliminated indigestible sugars. CONCLUSION: The fermented sunflower seed milk, obtained by using two food-grade microbes without further supplementation, displays an attractive, clean-label product with a high level of vitamin B12 and multiple co-benefits. The secret of the successfully upgraded plant milk lies in the multifunctional cooperation of the two microbes, which were combined, based on their genetic potential and metabolic signatures found in mono-culture fermentations. This design by knowledge approach appears valuable for future development of plant-based milk products.


Assuntos
Bacillus amyloliquefaciens , Propionibacterium freudenreichii , Animais , Técnicas de Cocultura , Humanos , Leite , Sementes , Vitamina B 12 , Vitaminas/metabolismo
3.
Microb Cell Fact ; 20(1): 109, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049541

RESUMO

BACKGROUND: Plant-based milk alternatives are more popular than ever, and chickpea-based milks are among the most commercially relevant products. Unfortunately, limited nutritional value because of low levels of the essential amino acid L-lysine, low digestibility and unpleasant taste are challenges that must be addressed to improve product quality and meet consumer expectations. RESULTS: Using in-silico screening and food safety classifications, 31 strains were selected as potential L-lysine producers from approximately 2,500 potential candidates. Beneficially, 30% of the isolates significantly accumulated amino acids (up to 1.4 mM) during chickpea milk fermentation, increasing the natural level by up to 43%. The best-performing strains, B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511, were tested further. De novo lysine biosynthesis was demonstrated in both strains by 13C metabolic pathway analysis. Spiking small amounts of citrate into the fermentation significantly activated L-lysine biosynthesis in NCC 156 and stimulated growth. Both microbes revealed additional benefits in eliminating indigestible sugars such as stachyose and raffinose and converting off-flavour aldehydes into the corresponding alcohols and acids with fruity and sweet notes. CONCLUSIONS: B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511 emerged as multi-benefit microbes for chickpea milk fermentation with strong potential for industrial processing of the plant material. Given the high number of L-lysine-producing isolates identified in silico, this concept appears promising to support strain selection for food fermentation.


Assuntos
Vias Biossintéticas , Aromatizantes/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lisina/biossíntese , Substitutos do Leite/metabolismo , Açúcares/metabolismo , Cicer/metabolismo , Fermentação , Microbiologia de Alimentos , Genoma Bacteriano , Lactobacillales/isolamento & purificação , Paladar
4.
Appl Microbiol Biotechnol ; 103(23-24): 9263-9275, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686143

RESUMO

Non-dairy milk alternatives (or milk analogues) are water extracts of plants and have become increasingly popular for human nutrition. Over the years, the global market for these products has become a multi-billion dollar business and will reach a value of approximately 26 billion USD within the next 5 years. Moreover, many consumers demand plant-based milk alternatives for sustainability, health-related, lifestyle and dietary reasons, resulting in an abundance of products based on nuts, seeds or beans. Unfortunately, plant-based milk alternatives are often nutritionally unbalanced, and their flavour profiles limit their acceptance. With the goal of producing more valuable and tasty products, fermentation can help to the improve sensory profiles, nutritional properties, texture and microbial safety of plant-based milk alternatives so that the amendment with additional ingredients, often perceived as artificial, can be avoided. To date, plant-based milk fermentation mainly uses mono-cultures of microbes, such as lactic acid bacteria, bacilli and yeasts, for this purpose. More recently, new concepts have proposed mixed-culture fermentations with two or more microbial species. These approaches promise synergistic effects to enhance the fermentation process and improve the quality of the final products. Here, we review the plant-based milk market, including nutritional, sensory and manufacturing aspects. In addition, we provide an overview of the state-of-the-art fermentation of plant materials using mono- and mixed-cultures. Due to the rapid progress in this field, we can expect well-balanced and naturally fermented plant-based milk alternatives in the coming years.


Assuntos
Dieta Vegetariana , Fermentação , Substitutos do Leite , Valor Nutritivo , Aromatizantes , Lactobacillales/metabolismo , Prunus dulcis/química , Glycine max/química , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA