Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563446

RESUMO

We examined whether sulfated hyaluronan exerts inhibitory effects on enzymatic and biological actions of heparanase, a sole endo-beta-glucuronidase implicated in cancer malignancy and inflammation. Degradation of heparan sulfate by human and mouse heparanase was inhibited by sulfated hyaluronan. In particular, high-sulfated hyaluronan modified with approximately 2.5 sulfate groups per disaccharide unit effectively inhibited the enzymatic activity at a lower concentration than heparin. Human and mouse heparanase bound to immobilized sulfated hyaluronan. Invasion of heparanase-positive colon-26 cells and 4T1 cells under 3D culture conditions was significantly suppressed in the presence of high-sulfated hyaluronan. Heparanase-induced release of CCL2 from colon-26 cells was suppressed in the presence of sulfated hyaluronan via blocking of cell surface binding and subsequent intracellular NF-κB-dependent signaling. The inhibitory effect of sulfated hyaluronan is likely due to competitive binding to the heparanase molecule, which antagonizes the heparanase-substrate interaction. Fragment molecular orbital calculation revealed a strong binding of sulfated hyaluronan tetrasaccharide to the heparanase molecule based on electrostatic interactions, particularly characterized by interactions of (-1)- and (-2)-positioned sulfated sugar residues with basic amino acid residues composing the heparin-binding domain-1 of heparanase. These results propose a relevance for sulfated hyaluronan in the blocking of heparanase-mediated enzymatic and cellular actions.


Assuntos
Carcinoma , Glucuronidase , Ácido Hialurônico , Animais , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Glucuronidase/efeitos dos fármacos , Glucuronidase/metabolismo , Heparina/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Sulfatos
2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269821

RESUMO

Osteoarthritis is a progressive disease characterized by cartilage destruction in the joints. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play key roles in osteoarthritis progression. In this study, we screened a chemical compound library to identify new drug candidates that target MMP and ADAMTS using a cytokine-stimulated OUMS-27 chondrosarcoma cells. By screening PCR-based mRNA expression, we selected 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide as a potential candidate. We found that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated IL-1ß-induced MMP13 mRNA expression in a dose-dependent manner, without causing serious cytotoxicity. Signaling pathway analysis revealed that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated ERK- and p-38-phosphorylation as well as JNK phosphorylation. We then examined the additive effect of 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide in combination with low-dose betamethasone on IL-1ß-stimulated cells. Combined treatment with 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide and betamethasone significantly attenuated MMP13 and ADAMTS9 mRNA expression. In conclusion, we identified a potential compound of interest that may help attenuate matrix-degrading enzymes in the early osteoarthritis-affected joints.


Assuntos
Cartilagem Articular , Osteoartrite , Betametasona , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Humanos , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Osteoartrite/metabolismo , RNA Mensageiro/metabolismo
3.
Biochem Biophys Res Commun ; 520(1): 152-158, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31582210

RESUMO

We examined whether chondroitin sulfates (CSs) exert inhibitory effects on heparanase (Hpse), the sole endoglycosidase that cleaves heparan sulfate (HS) and heparin, which also stimulates chemokine production. Hpse-mediated degradation of HS was suppressed in the presence of glycosaminoglycans derived from a squid cartilage and mouse bone marrow-derived mast cells, including the E unit of CS. Pretreatment of the chondroitin sulfate E (CS-E) with chondroitinase ABC abolished the inhibitory effect. Recombinant proteins that mimic pro-form and mature-form Hpse bound to the immobilized CS-E. Cellular responses as a result of Hpse-mediated binding, namely, uptake of Hpse by mast cells and Hpse-induced release of chemokine CCL2 from colon carcinoma cells, were also blocked by the CS-E. CS-E may regulate endogenous Hpse-mediated cellular functions by inhibiting enzymatic activity and binding to the cell surface.


Assuntos
Células da Medula Óssea/metabolismo , Sulfatos de Condroitina/farmacologia , Glucuronidase/metabolismo , Animais , Células da Medula Óssea/citologia , Cartilagem/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Quimiocinas/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Decapodiformes , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Mastócitos/citologia , Mastócitos/metabolismo , Camundongos , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA