Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37045472

RESUMO

Old animals display significant alterations in sleep-wake patterns such as increases in sleep fragmentation and sleep propensity. Here, we demonstrated that PR-domain containing protein 13 (Prdm13)+ neurons in the dorsomedial hypothalamus (DMH) are activated during sleep deprivation (SD) in young mice but not in old mice. Chemogenetic inhibition of Prdm13+ neurons in the DMH in young mice promotes increase in sleep attempts during SD, suggesting its involvement in sleep control. Furthermore, DMH-specific Prdm13-knockout (DMH-Prdm13-KO) mice recapitulated age-associated sleep alterations such as sleep fragmentation and increased sleep attempts during SD. These phenotypes were further exacerbated during aging, with increased adiposity and decreased physical activity, resulting in shortened lifespan. Dietary restriction (DR), a well-known anti-aging intervention in diverse organisms, ameliorated age-associated sleep fragmentation and increased sleep attempts during SD, whereas these effects of DR were abrogated in DMH-Prdm13-KO mice. Moreover, overexpression of Prdm13 in the DMH ameliorated increased sleep attempts during SD in old mice. Therefore, maintaining Prdm13 signaling in the DMH might play an important role to control sleep-wake patterns during aging.


Assuntos
Hipotálamo , Privação do Sono , Camundongos , Animais , Hipotálamo/metabolismo , Privação do Sono/metabolismo , Obesidade/metabolismo , Sono , Dieta , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Front Pharmacol ; 11: 789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547396

RESUMO

Promoting axonal growth is essential for repairing damaged neuronal connections and motor function in spinal cord injury (SCI). Neuroleukin (NLK) exerts axonal growth activity in vitro and in vivo, but the mechanism remains unclear. This study reveals that the 78-kDa glucose-regulated protein (GRP78) is a NLK neuronal receptor that contributes to recovery from SCI. Binding and immunoprecipitation assays indicated that NLK binds to GRP78. Pretreatment to cultured neurons with a GRP78-neutralizing antibody suppressed NLK-induced axonal growth. Blocking cell surface GRP78 inhibited neuronal NLK-induced Akt activation. Treatment with an Akt inhibitor suppressed NLK-induced axonal growth. Continuous administration of NLK into the lateral ventricle of SCI mice increased axonal density in the injured region and restored motor function, which was not observed when NLK was simultaneously administered with a GRP78-neutralizing antibody. These results indicate that GRP78 regulates the NLK-induced axonal growth activity; NLK-GRP78 signaling promotes motor function recovery in SCI, presenting as a potential therapeutic target.

3.
Front Pharmacol ; 9: 1228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459611

RESUMO

Under pathological conditions in the central nervous system (CNS), including spinal cord injury, astrocytes show detrimental effects against neurons. It is also known that astrocytes sometimes exert beneficial effects, such as neuroprotection and secretion of axonal growth factors. If beneficial effects of astrocytes after injury could be induced, dysfunction of the injured CNS may improve. However, a way of promoting beneficial functions in astrocytes has not been elucidated. In the current study, we focused on neuroleukin (NLK), which is known to have axonal growth activities in neurons. Although NLK is secreted from astrocytes, the function of NLK in astrocytes is poorly understood. We aimed to clarify the mechanism of NLK secretion in astrocytes and the functional significance of secreted NLK from astrocytes. Stimulation of cultured astrocytes with recombinant NLK significantly elevated the secretion of NLK from astrocytes. Furthermore, astrocyte conditioned medium treated with NLK increased axonal density in cultured cortical neurons. Recombinant NLK itself directly increased axonal density in cultured neurons. These results indicated that NLK secreted from astrocytes acted as an axonal growth factor and that secretion was stimulated by extracellular NLK. To elucidate a direct binding molecule of NLK on astrocytes, drug affinity responsive target stability (DARTS) analysis was performed. A 78 kDa glucose regulated protein (GRP78) was identified as a receptor for NLK, which was related to the secretion of NLK from astrocytes. When NLK was injected into the lesion site of spinal cord injured mice, axonal density in the injured region was significantly increased and hindlimb motor function improved. These results suggested that NLK-GRP78 signalling was important for the beneficial effects of astrocytes. This study strengthens the potential of astrocytes for use as therapeutic targets in CNS traumatic injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA